SMi21 DCmind Brushless Motors

User Manual and Safety Notice

Important Notes

- This manual is part of the product.
- Read and follow the instructions in this manual.
- Keep this manual in a safe place.
- Give this manual and any other documents relating to the product to anyone that uses the product.
- Read and be sure to comply with all the safety instructions and the section "Before you Begin - Safety-Related Information".
- Please consult the latest catalogue to find out about the product's technical specifications.
- We reserve the right to make modifications without prior notification.
Table of Contents

1. Introduction .. 6
 1.1. Motor Family .. 6
 1.2. Characteristics .. 6
 1.3. Options .. 6
 1.4. Identification Label ... 6
 1.5. Product Coding ... 7
2. Before you Begin - Safety-Related Information ... 8
 2.1. Personnel Qualifications ... 8
 2.2. Use in Compliance with Industry Practice ... 8
 2.3. Basic Information ... 9
 2.4. Standards and concepts ... 10
3. Precautions for use concerning the mechanics .. 11
 3.1. Data specific to the motor shaft .. 11
 3.1.1. Press-fit force .. 11
 3.1.2. Radial load on the shaft .. 11
 3.2. Options .. 12
 3.2.1. Holding brake .. 12
 3.2.2. Gearboxes .. 12
 3.2.3. Other .. 12
4. Accessories .. 12
 4.1. Starter Kit .. 12
5. Installation .. 13
 5.1. Overview of the Installation Procedure .. 15
 5.2. Electromagnetic Compatibility (EMC) .. 15
 5.3. Prior to Mounting ... 16
 5.4. Mounting the Motor ... 17
 5.5. Electrical Installation .. 18
 5.5.1. Connecting the Holding Brake (Optional) .. 20
 5.6. USB Connector ... 21
6. Operation .. 22
 6.1. Preparation for Operating ... 22
7. Product overview ... 24
 7.1. Description of the Product .. 24
 7.2. SMi21 Control Electronics .. 24
 7.3. "DCmind-Soft" PC Parameter-Definition Software .. 25
8. Technical Specifications .. 26
 8.1. Electrical Data ... 26
 8.2. Generic Data .. 26
8.3. Control Logic Bundle .. 27
8.4. Power Supply Cable ... 28
9. Motor electrical connection .. 29
 9.1. Power Connection ... 29
 9.1.1. Ballast Circuit ... 29
 9.1.2. EMC Protection .. 31
 9.2. Protection .. 32
 9.2.1. Voltage Protection ... 32
 9.2.2. Temperature Protection .. 32
 9.2.3. Current Limiting .. 32
 9.3. USB Connection .. 33
 9.4. Input/Output Connection ... 35
 9.4.1. Equivalent Input Diagram .. 35
 9.4.2. Equivalent Output Diagram .. 36
10. Installation of the DCmind-Soft HMI .. 37
 10.1. Introduction ... 37
 10.2. System Required .. 37
 10.3. Installation of the USB Drivers .. 37
 10.4. Installation of the Crouzet DCmind-Soft HMI .. 38
 10.5. Description of the Main Window ... 41
 10.6. Motor Connection ... 43
 10.7. Updating the Firmware ... 44
11. Application programs .. 46
 11.1. Description ... 46
 11.2. Description of the Monitoring Part ... 48
 11.3. "Valve" Group .. 49
 11.3.1. "Valve 4 positions" Application Program ... 49
 11.3.2. "Valve 30 positions" Application Program with 1 Mechanical Stop 51
 11.4. "Conveyor Belt" Group .. 54
 11.4.1. "Conveyor Belt 0-10V" Application Program ... 54
 11.4.2. "Conveyor Belt PWM" Application Program .. 56
 11.4.3. "Conveyor with stop on detection" Application program .. 58
 11.5. "Machine" Group ... 60
 11.5.1. "Worm Gear" Application Program ... 60
 11.5.2. "Worm Gear (Proportional)" Application Program ... 63
 11.5.3. "Clamp" Application Program .. 66
 11.6. "Dosing" group .. 68
 11.6.1. Application program "Peristaltic pump" .. 68
12. Expert programs ... 70
 12.1. Speed Programs ... 70
 12.1.1. Types of Inputs in V100 Programs ... 70
12.1.2. Types of Inputs in V200 Programs ... 70
12.1.3. Types of Outputs in V100 Programs .. 71
12.1.4. Type of outputs in V200 programs ... 71
12.1.5. Description of the Various V100 and V200 Tabs ... 71
12.1.6. Expert Program V101 .. 77
12.1.7. Expert Program V102 .. 87
12.1.8. Expert Program V103 .. 96
12.1.9. Expert Program V104 .. 106
12.1.10. Expert program V201 .. 116
12.1.11. Expert program V202 ... 124
12.2. Position Programs ... 132
12.2.1. Types of Inputs in P100 Programs ... 132
12.2.2. Types of Inputs in P200 Programs ... 133
12.2.3. Types of Outputs in P100 and P200 Programs ... 134
12.2.4. Description of the Different Types of Homing ... 135
12.2.5. Description of the P100 Various Tabs ... 141
12.2.6. Expert Program P101 .. 147
12.2.7. Expert Program P111 .. 160
12.2.8. Description of the P200 Various Tabs ... 172
12.2.9. Expert Program P201 .. 178
12.2.10. Expert Program P202 ... 192
12.3. Torque Programs .. 206
12.3.1. Types of Inputs in C100 Programs ... 206
12.3.2. Types of Outputs in C100 Programs ... 206
12.3.3. Description of the Various Tabs ... 207
12.3.4. Expert Program C101 ... 211
13. Saving Parameters .. 218
14. Diagnostics and Troubleshooting ... 221
14.1. Mechanical Failures .. 221
14.2. Electrical Failures .. 221
15. Service, maintenance and disposal ... 222
15.1. Addresses of After-Sales Service Outlets ... 222
15.2. Storage .. 222
15.3. Maintenance .. 222
15.4. Replacing the Motor .. 223
15.5. Dispatch, Storage, Disposal .. 223
15.6. Terminology and Abbreviations ... 224
About This Manual

This manual applies to SMi21 DCmind brushless products:
- 801400SMI21, 801495SMI21, 801496SMI21, 801410SMI21
- 801800SMI21, 801896SMI21, 801897SMI21, 801810SMI21
- 802800SMI21, 802896SMI21, 802897SMI21, 802810SMI21

Reference source for manuals
The manuals can be downloaded from our website at the following address:
http://www.crouzet.com/

Units
SI units are the default values.

Risk Categories

In this manual, safety instructions are identified by warning symbols. Depending on how serious the situation is, the safety instructions are split into 3 risk categories.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
<td>Indicates a directly dangerous situation which, if the instructions are not followed, will inevitably lead to a serious or fatal accident.</td>
</tr>
<tr>
<td>WARNING</td>
<td>Indicates a possibly dangerous situation which, if the instructions are not followed, will in some cases lead to a serious or fatal accident or cause damage to equipment.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>Indicates a potentially dangerous situation which, if the instructions are not followed, will in some cases lead to an accident or cause damage to equipment.</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1. Motor Family
SMi21 DCmind brushless motors are brushless DC motors, with a control circuit board integrated in the motor.

1.2. Characteristics
SMi21 DCmind brushless motors are intelligent servomotors for speed, position and torque control applications. They can be configured via a Human-Machine Interface (HMI). They are equipped with 2 unshielded cables as standard, 1 for the power, 1 for the control signals.

1.3. Options
The motors can be supplied with options, such as:
- Different gearboxes
- A failsafe holding brake
- Different motor output shaft versions

1.4. Identification Label
The label contains the following data:

1. Product family code.
2. Product part number.
3. Reserved zone.
4. Zone reserved for specific customer marking.
5. Week/year manufacturing date.
6. Operating voltage.
7. Nominal motor speed at 24 V.
8. Nominal motor current.
9. Reduction ratio (for geared motor versions).
10. Maximum nominal torque applicable to the gearbox (for geared motor versions).
12. Insulation system temperature class.
13. Product degree of protection (sealing) during operation (excluding output shaft).
1.5. Product Coding

80 XX XX SMi21: Product family on SMi21 electronic base

<table>
<thead>
<tr>
<th>PRODUCT REFERENCE</th>
<th>80</th>
<th>XX</th>
<th>XX</th>
<th>XX</th>
<th>XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of stator:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14: 30mm brushless stator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18: 50 mm brushless stator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28: 50 mm brushless stator high torque</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gearbox adaptation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00: no gearbox</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10: RAD10 gearbox</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95: P52 gearbox</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96: P62 gearbox</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97: P81 gearbox</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increment numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. BEFORE YOU BEGIN - SAFETY-RELATED INFORMATION

2.1. Personnel Qualifications

Only qualified personnel who are familiar with and fully understand the contents of this manual are authorized to work on and with this product.

Qualified personnel must be familiar with current standards, regulations and requirements concerning prevention of accidents during work undertaken on and with this product.

These qualified personnel must have undergone safety training in order to be able to detect and avoid related hazards.

Their professional training, knowledge and experience renders such qualified personnel capable of preventing and recognizing potential hazards that might be generated through use of the product, modifying settings and the mechanical, electrical and electronic equipment in the whole installation.

2.2. Use in Compliance with Industry Practice

As demonstrated in these instructions, this product is a component designed for use in industrial environments.

The current safety instructions, specified conditions and technical specifications must be complied with at all times.

Before starting to use the product, undertake a risk analysis using actual examples. Depending on the result, the necessary safety measures must be implemented.

Since the product is used as a component in an overall system, it is the user’s responsibility to guarantee people's safety through the concept of the overall system (e.g. concept of a machine).

Only use original manufacturer accessories and spare parts.

The product must not be used in explosive atmospheres (Ex zone).

All other types of use are deemed to be non-compliant and can be dangerous.

Only qualified personnel are authorized to install, operate, maintain and repair electrical equipment.
2.3. Basic Information

⚠️ DANGER

DANGEROUS PHENOMENON LINKED TO ELECTRIC SHOCK, EXPLOSION OR EXPLOSION DUE TO AN ELECTRIC ARC

• Only qualified personnel who are familiar with and fully understand the contents of this manual are authorized to work on this product. Only qualified personnel are authorized to undertake installation, setting, repair and maintenance.
• The installation manufacturer is responsible for complying with all the applicable requirements and regulations with regard to grounding the drive system.
• It is the user's responsibility to define whether it is necessary to ground the motor, depending on its intended use.
• Do not touch unprotected live parts.
• Only use electrically-isolated tools.
• AC voltages can be connected to unused conductors in the motor cable. Isolate unused conductors at both ends of the motor cable.
• The motor produces a voltage when the shaft turns. Protect the motor shaft from any external drive operation before working on the drive system:
 – De-energize all connections.
 – Attach a notice saying “DO NOT START UP” on all the switches.
 – Protect all the switches from switching on.
 – Wait for the internal motor capacitors to discharge. Measure the voltage on the power cable and check that it is less than 12 VDC.
• Install protective covers and ensure they are closed before energization.

Failure to comply with these precautions will result in death or serious injury.
WARNING

LOSS OF COMMAND CONTROL
• When perfecting the command concept, the installation manufacturer must take account of the possibilities for potential failure of command paths and provide, for certain critical functions, the means of returning to safe states during and after the failure of a command path. Examples of critical command functions are: EMERGENCY STOP, end position limiting, network outage and restarting.
• Separate or redundant command paths must be available for critical functions.
• Comply with the accident prevention instructions and all current safety directives.
• Any installation in which the product described in this manual has a central role must be carefully and meticulously checked prior to commissioning to ensure it is working properly.

Failure to comply with these precautions can result in death or serious injury.

WARNING

UNBRAKED MOVEMENT
In the event of a power outage and errors resulting in disconnection of the power stage, the motor is no longer braked in a controlled way and can cause damage.
• Prevent access to the hazardous zone.
• If necessary, use a damped mechanical stop or a service brake.

Failure to comply with these precautions can result in death, serious injury or damage to equipment.

2.4. Standards and concepts
The product is ROHS confirmed following European Directive 2011/65/CE. Following this confirmation, the product is CE marked.
The electrical design follows the IEC 60335-1 and IEC 60950-1 standards.
3. PRECAUTIONS FOR USE CONCERNING THE MECHANICS

3.1. Data specific to the motor shaft

3.1.1. Press-fit force

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOTOR MECHANISM</td>
</tr>
<tr>
<td>Exceeding the maximum permissible forces on the shaft leads to rapid bearing wear, a broken shaft or damage to any accessories (encoder, brake, etc.)</td>
</tr>
<tr>
<td>• Never exceed the maximum axial and radial forces.</td>
</tr>
<tr>
<td>• Protect the shaft from any impact.</td>
</tr>
<tr>
<td>• When press-fitting components, do not exceed the maximum permissible axial force.</td>
</tr>
<tr>
<td>Failure to comply with these precautions can result in death, serious injury or damage to equipment.</td>
</tr>
</tbody>
</table>

The maximum press-fit force is limited by the maximum permissible axial force on the ball bearings. This maximum axial force is stated in the motor technical data sheet. Alternatively, the component to be fixed in position can be clamped, glued or shrunk-fit.

3.1.2. Radial load on the shaft

The application point \(X \) of the radial force \(F \) depends on the motor size. This information appears in the motor technical data sheet.

The maximum axial and radial loads must not be applied simultaneously.
3.2. Options

3.2.1. Holding brake
SMi21 DCmind brushless motors can be equipped as standard with a failsafe electromechanical brake. The holding brake is designed to lock the motor shaft in a de-energized state. The holding brake is not a safety function. How it is controlled is described in the "Connecting the Holding Brake" section.

3.2.2. Gearboxes
SMi21 DCmind brushless motors can be equipped with different types of gearbox. The gearboxes offered as standard in the catalogue are planetary gearboxes which combine compact size and robust design, and worm gearboxes that allow a shaft output at right-angles to the motor shaft.

3.2.3. Other
Other types of adaptation are possible on request, please contact the sales department.

4. ACCESSORIES

4.1. Starter Kit

This kit consists of a 2-meter long micro USB B to USB A (MOLEX 68784-0003) connecting cable and a USB stick containing the "Crouzet Interface" parameter-definition software and installation drivers for this HMI. This starter kit can be obtained by ordering part number 79 298 008.
5. INSTALLATION

Installation must, as a general rule, be performed in accordance with good practice.

WARNING

HEAVY WEIGHT AND FALLING PARTS
The motor can be extremely heavy.
- When mounting, take the weight of the motor into account.
- Mounting (screw tightening torque) must be performed in such a way that the motor cannot become detached, even if subjected to strong accelerations or constant jolting.
Failure to comply with these precautions can result in death, serious injury or damage to equipment.

WARNING

STRONG ELECTROMAGNETIC FIELDS
Motors can generate locally powerful electrical and magnetic fields. These can cause sensitive equipment to fail.
- Keep people with implants such as pacemakers away from the motor.
- Do not place sensitive equipment in the immediate vicinity of the motor.
Failure to comply with these precautions can result in death, serious injury or damage to equipment.

WARNING

UNEXPECTED BEHAVIOR CAUSED BY DAMAGE OR FOREIGN BODIES
Following damage to the product or the presence of foreign bodies, deposits or penetration of fluid, unexpected behavior can occur.
- Do not use damaged products.
- Make sure that no foreign body has been able to penetrate the product.
- Check that the power supply lead seals and cable entries have been positioned correctly.
- Check that the stopper protecting the USB B to USB A micro connector has been positioned correctly.
Failure to comply with these precautions can result in death, serious injury or damage to equipment.
WARNING

HOT SURFACES
The product's metal surface can heat up to more than 70°C in certain types of use.
- Avoid all contact with the metal surface.
- Do not place flammable or heat-sensitive components in the immediate vicinity.
- Assemble components in the best way for heat dissipation.
Failure to comply with these precautions can result in injury or damage to equipment.

WARNING

DAMAGE AND DESTRUCTION OF THE MOTOR CAUSED BY STRESS
The motor is not designed to carry loads. If subjected to stress, the motor can be damaged, or even fall.
- Do not use the motor as a step.
- Prevent the motor from being used in any way other than its intended purpose by installing guards or displaying safety instructions.
Failure to comply with these precautions can result in injury or damage to equipment.

CAUTION

VOLTAGE SURGES
During braking phases, the motor generates voltage surges.
- Check that these voltage surges are acceptable to other devices connected on the same power supply.
- If possible, use an external circuit to limit voltage surges.
Failure to comply with these precautions can result in injury or damage to equipment.
5.1. Overview of the Installation Procedure

The installation procedure is described in the following sections:

- Electromagnetic Compatibility (EMC)
- Prior to Mounting
- Mounting the Motor
- Electrical Installation
- Connecting the USB cable to Set the Motor Parameters

Check that these sections have been read and understood, and that installation has subsequently been executed correctly.

5.2. Electromagnetic Compatibility (EMC)

DANGER

INTERFERENCE AFFECTING SIGNALS AND EQUIPMENT

Disturbed signals can cause equipment to behave unpredictably.
- Wire up products in compliance with the specific EMC recommendations for each device.
- Make sure that these EMC recommendations are executed correctly.

Failure to comply with these precautions can result in death, serious injury or damage to equipment.

Recommendations in terms of EMC: Installing the motor power supply leads

When planning the wiring, take account of the fact that the motor power supply leads must be kept separate from line supplies or cables carrying signals.

Comply with the following measures as concerns EMC.

<table>
<thead>
<tr>
<th>Measures relating to EMC</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep the cables as short as possible. Do not install unnecessary cable loops.</td>
<td>Reduces stray couplings, both capacitive and inductive.</td>
</tr>
<tr>
<td>Ground the product.</td>
<td>Reduces emissions, improves immunity to interference.</td>
</tr>
<tr>
<td>If using shielded cables, install the cable shielding so that it is in contact with the widest possible surface area, use cable grips and ground strips.</td>
<td>Reduces emissions.</td>
</tr>
<tr>
<td>Keep the motor power supply leads separate from cables carrying signals or use shielding plates.</td>
<td>Reduces stray cross-couplings.</td>
</tr>
<tr>
<td>If using shielded cables, install the cables without any disconnection points. 1)</td>
<td>Reduces stray radiation.</td>
</tr>
</tbody>
</table>

1) When a cable is disconnected for installation, the cables must be connected at the disconnection point via a shielding connection and a metal box.
Equipotential bonding conductors
If using shielded cables, differences in potential can generate unauthorized currents on the cable shielding. Use equipotential bonding conductors to minimize currents on the cable shielding.

5.3. Prior to Mounting

Look for any damage
Damaged drive systems must neither be mounted nor used.

⇒ Check the drive system prior to mounting, looking out for any visible signs of damage.

Clean the shaft
On leaving the factory, the motor shaft extensions are coated with a film of oil. If transmission devices are to be glued on, it may be necessary to remove the film of oil and clean the shaft. If necessary, use degreasing products in accordance with the glue manufacturer’s instructions.

⇒ Avoid any direct contact between the skin or sealing materials and the cleaning product used.

Flange mounting surface
The mounting surface must be stable, flat and clean.

⇒ In regards to installation, make sure that all dimensions and tolerances are respected.

Specification of power supply leads
The power supply leads for the motor and its accessories must be selected carefully on the basis of their length, the motor supply voltage, the ambient temperature, the current level circulating therein, and their environment.

![WARNING]

DAMAGE AND FIRE DUE TO INCORRECT INSTALLATION
Repeated force and movement around the grommets can damage the cables.
• Comply with the stated bend radius.
• Avoid subjecting the grommets to repeated force or movement.
• Attach the power supply cables close to the grommets using a strain relief.

Failure to comply with these precautions can result in injury or damage to equipment.
5.4. Mounting the Motor

DANGER

HOT SURFACES
The motor's surface can heat up to more than 70°C in certain types of use.
• Avoid contact with hot surfaces.
• Do not place flammable or heat-sensitive components in the immediate vicinity.
• Assemble components in the best way for heat dissipation.
• Check the temperature when performing a test.
 Failure to comply with these precautions can result in injury or damage to equipment.

WARNING

UNEXPECTED MOVEMENT DUE TO ELECTROSTATIC DISCHARGES
Electrostatic discharges (ESD) on the shaft can, in rare cases, lead to encoder system failures and generate unexpected motor movements.
• Use conductive parts (e.g. antistatic straps) or other appropriate measures to avoid a static charge due to movement.
 Failure to comply with these precautions can result in death, serious injury or damage to equipment.

WARNING

UNINTENDED BEHAVIOR CAUSED BY MECHANICAL DAMAGE TO THE MOTOR
Exceeding the maximum permissible forces leads to rapid bearing wear, a broken shaft or damage to the internal encoder.
• Never exceed the maximum axial and radial forces.
• Protect the shaft from any impact.
• When press-fitting components, do not exceed the maximum permissible axial force.
 Failure to comply with these precautions can result in death, serious injury or damage to equipment.
Mounting position
The motor can be mounted in any position.

Mounting
When mounting the motor on the flange, the motor must be aligned precisely in both the axial and radial directions. All the fixing screws must be tightened to the tightening torque stipulated by the application, taking care not to generate any warping.

Install the transmission devices
If the transmission device is installed incorrectly, this can damage the motor. Transmission devices such as pulleys and gears must be mounted in compliance with the maximum axial and radial loads defined in each motor's technical data sheet.
Follow the transmission device manufacturer's assembly instructions.
The motor and the transmission device must be aligned precisely both axially and radially. If this is not done, it will result in abnormal operation, damage to the bearings and significant wear.

5.5. Electrical Installation
These motors are not designed to be connected directly to the line supply.
It is the installer's responsibility to define the electrical protection devices to be implemented according to the regulations applicable to the end product range of application.
For the power supply to the power part we recommend using a double-insulated stabilized power supply. The motor is not protected against polarity reversals on the power part.
The motor is regenerative, in other words it can feed back energy to the power supply during braking phases. Voltage surges created in this way can reach levels that risk destroying the motor itself or devices placed on the same power supply.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRIC SHOCK</td>
</tr>
<tr>
<td>High voltages can appear unexpectedly on the motor connection.</td>
</tr>
<tr>
<td>• The motor produces a voltage when the shaft turns. Protect the motor shaft from any external drive operation before working on the drive system.</td>
</tr>
<tr>
<td>• The system manufacturer is responsible for complying with all applicable regulations with regard to grounding the drive system.</td>
</tr>
<tr>
<td>Failure to comply with these precautions will result in death or serious injury.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNEXPECTED MOVEMENT</td>
</tr>
<tr>
<td>As a result of incorrect wiring or other error, the drives can execute unexpected movements.</td>
</tr>
<tr>
<td>• Do not start up the installation if there is anybody or any obstacle in the danger zone.</td>
</tr>
<tr>
<td>• Execute the initial test movements without loads connected.</td>
</tr>
<tr>
<td>• Do not touch the motor shaft or related drive elements.</td>
</tr>
<tr>
<td>Failure to comply with these precautions can result in death, serious injury or damage to equipment.</td>
</tr>
</tbody>
</table>
WARNING

VOLTAGE SURGES
During braking phases, the motor generates voltage surges.
- Check that these voltage surges are acceptable to other devices connected on the same power supply.
- If possible, use an external circuit to limit voltage surges if the brake is used intensively.
Failure to comply with these precautions can result in death, serious injury or damage to equipment.

CAUTION

FIRE CAUSED BY BAD CONTACTS
If the connector is not properly inserted the motor connector can overheat, causing the contacts to melt due to an electric arc.
- Incorrect connection can cause overheating due to an electric arc.
Failure to comply with these precautions can result in injury or damage to equipment.

CAUTION

IRREPARABLE PRODUCT DAMAGE CAUSED BY REVERSED POLARITY
Incorrect connection of the power can result in reversed polarity, resulting in destruction of the circuit board inside the motor.
- Check the conformity of the power connections.
- Place a slow-blow fuse on the power supply that is appropriately sized for the current the motor needs to absorb in the application.
Failure to comply with these precautions can result in injury or damage to equipment.

Connecting the protection conductor
It is the installer's responsibility to define whether the motor needs to be grounded. The mounting flange should be used for this purpose. Never connect or disconnect the product power supply leads while the voltage is applied.
5.5.1. Connecting the Holding Brake (Optional)

⚠️ WARNING

LOSS OF BRAKING FORCE DUE TO WEAR OR HIGH TEMPERATURE
Engaging the holding brake while the motor is running leads to rapid wear and loss of braking force.
• Do not use the brake as a service brake.
• Note that “emergency stops” can also cause wear.
Failure to comply with these precautions can result in death, serious injury or damage to equipment.

⚠️ WARNING

UNEXPECTED MOVEMENT
Releasing the holding brake can result in unexpected movement on the installation.
• Make sure this cannot cause any damage.
• Do not continue with the test if there is anybody or any obstacle in the danger zone.
Failure to comply with these precautions can result in death, serious injury or damage to equipment.

⚠️ CAUTION

MALFUNCTION OF THE HOLDING BRAKE DUE TO INAPPROPRIATE VOLTAGE
• If the voltage is too low, the holding brake cannot release, resulting in wear.
• In the event of voltages higher than the specified value, the holding brake will be subject to significant overheating.
Failure to comply with these precautions can result in injury or damage to equipment.

A motor with a holding brake needs a corresponding control logic which releases the holding brake at the start of the rotation movement, locking the motor shaft in time when the motor stops.
5.6. USB Connector

The motor is equipped with a USB B to USB A micro connector, which can be accessed by removing the stopper from the housing.
The stopper prevents penetration of foreign bodies or fluids inside the motor.
The stopper prevents fingers or any inappropriate object making contact with the USB B to USB A micro connector.

It must be replaced carefully after use, in order to keep the motor sealed.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNEXPECTED MOVEMENT DUE TO ELECTROSTATIC DISCHARGES</td>
</tr>
<tr>
<td>Electrostatic discharges (ESD) on the USB B to USB A micro connector can, in some cases, lead to deterioration or destruction of some system components and generate unexpected motor operation.</td>
</tr>
<tr>
<td>• Never touch the connector with your fingers or any inappropriate object.</td>
</tr>
<tr>
<td>Failure to comply with these precautions can result in death, serious injury or damage to equipment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOSS OF SEALING</td>
</tr>
<tr>
<td>The stopper ensures the motor is sealed.</td>
</tr>
<tr>
<td>• Replace it after completing parameter definition.</td>
</tr>
<tr>
<td>• Make a visual check to ensure it is in place.</td>
</tr>
<tr>
<td>Failure to comply with these precautions can result in injury or damage to equipment.</td>
</tr>
</tbody>
</table>
6. OPERATION

6.1. Preparation for Operating

Prior to operating:

❖ Check that the mechanical installation is correct.
❖ Check that the electrical installation has been carried out professionally; pay special attention to the protective conductor connections and the grounding connections. Check that all the junctions are correct, properly connected and that the screws are fully tightened.
❖ Check that the ambient conditions and operating conditions: make sure that the stipulated ambient conditions are adhered to and that the drive solution conforms to the expected operating conditions.
❖ Check that any transmission devices that are already mounted are balanced and aligned precisely.
❖ Check that the operating conditions do not generate abnormal voltage surges for the product or the application.
❖ Check that the holding brake can withstand the maximum load. After applying the braking voltage, make sure that the holding brake is fully released. Make sure that the holding brake is fully released before initiating a movement.
❖ Check that the USB micro connector's protective stopper has been replaced correctly.

⚠️ WARNING

UNEXPECTED MOVEMENT
As a result of incorrect wiring or other error, the drives can execute unexpected movements.
• Check the wiring.
• Do not start up the installation if there is anybody or any obstacle in the danger zone.
• Execute the initial test movements without loads connected.
• Do not touch the motor shaft or related drive elements.
Failure to comply with these precautions can result in death, serious injury or damage to equipment.

⚠️ WARNING

ROTATING PARTS
Rotating parts can cause injuries, trap clothing or hair. Separate parts or unbalanced parts can be ejected.
• Check that all rotating parts are fitted properly.
• Use a protective cover for rotating parts.
Failure to comply with these precautions can result in death, serious injury or damage to equipment.

⚠️ WARNING

FALLING PARTS
The motor can move due to the reaction torque; it can topple over and fall.
• Fix the motor firmly in place so that it cannot become detached during rapid acceleration.
Failure to comply with these precautions can result in death, serious injury or damage to equipment.
CAUTION

HOT SURFACES
The motor's surface can heat up to more than 70°C in certain types of use.
• Avoid contact with hot surfaces.
• Do not place flammable or heat-sensitive components in the immediate vicinity.
• Assemble components in the best way for heat dissipation.
• Check the temperature when performing a test.
Failure to comply with these precautions can result in injury or damage to equipment.

CAUTION

VOLTAGE SURGES
During braking phases, the motor generates voltage surges.
• Check that these voltage surges are acceptable to other devices connected on the same power supply.
• If possible, use an external circuit to limit voltage surges.
if the brake is used intensively.
Failure to comply with these precautions can result in injury or damage to equipment.
7. PRODUCT OVERVIEW

7.1. Description of the Product

The SMi21 electronic control card contains the control electronics for a brushless motor, integrated in the motor body.

This electronics is used for:

- Power switching of the motor in sine mode (field-oriented control (FOC)).
- Position-Speed-Torque and Current control algorithms.
- Use of preconfigured programs which can perform numerous routine applications.
- Management of different types of operation:
 - “Stand-alone” motor without external PLC.
 - Use with other motors incorporating SMi21 or TNI21 or Motomate electronics.
 - Use with a programmable controller, with the SMi21 simplifying motor management.
- The interface with parameter-definition software installed on the PC:
 - Easy to use, even by a layman, thanks to simplified application programs that are quick to get up and running.
 - Wide choice of expert programs covering a wide range of applications.
 - USB connection via a commercially-available standard cable (can be supplied on request).
- Management of 6 inputs and 4 outputs to control the motor:
 - 2 inputs that can be configured for 0-10 V 10-bit analog or PWM or digital control
 - 4 digital inputs
 - 1 output that can be configured as PWM or frequency or digital
 - 1 output that can be configured as PWM or digital
 - 2 digital outputs

As standard, the motors have an internal encoder with 4096 points per revolution that can reach high positioning and control resolutions.

Figure 1

7.2. SMi21 Control Electronics

The SMi21 electronic control card contains the control electronics for a brushless motor, integrated in the motor body.

This electronics is used for:

- Power switching of the motor in sine mode (field-oriented control (FOC)).
- Position-Speed-Torque and Current control algorithms.
- Use of preconfigured programs which can perform numerous routine applications.
- Management of different types of operation:
 - “Stand-alone” motor without external PLC.
 - Use with other motors incorporating SMi21 or TNI21 or Motomate electronics.
 - Use with a programmable controller, with the SMi21 simplifying motor management.
- The interface with parameter-definition software installed on the PC:
 - Easy to use, even by a layman, thanks to simplified application programs that are quick to get up and running.
 - Wide choice of expert programs covering a wide range of applications.
 - USB connection via a commercially-available standard cable (can be supplied on request).
- Management of 6 inputs and 4 outputs to control the motor:
 - 2 inputs that can be configured for 0-10 V 10-bit analog or PWM or digital control
 - 4 digital inputs
 - 1 output that can be configured as PWM or frequency or digital
 - 1 output that can be configured as PWM or digital
 - 2 digital outputs

As standard, the motors have an internal encoder with 4096 points per revolution that can reach high positioning and control resolutions.
7.3. "DCmind-Soft" PC Parameter-Definition Software

This software can be downloaded from the Internet at the following address: http://www.crouzet.com/. It can also be supplied as a kit, see "Programming Kit" section.

This "DCmind-Soft" software is needed the first time the motor is used and for debugging.

It is used for:

- Selecting the motor operating program:
 - Position
 - Speed
 - Torque
 - Quick and easy starting using preprogrammed applications.
 - Use of "expert" programs that provide access to all settings.

- The various settings needed for the application to work correctly.
- Updating the "firmware" motor program using the bootloader function.
8. TECHNICAL SPECIFICATIONS

8.1. Electrical Data

Maximum Product Specifications

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage $V_{DC,\text{MAX}}$</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>Maximum current $I_{DC,\text{MAX}}$</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Maximum input voltage $V_{IN,\text{MAX}}$</td>
<td>50</td>
<td>V</td>
</tr>
<tr>
<td>Maximum output voltage $V_{OUT,\text{MAX}}$</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>Maximum output current $I_{OUT,\text{MAX}}$</td>
<td>50 mA</td>
<td></td>
</tr>
</tbody>
</table>

Operating Specifications

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage V_{DC}</td>
<td>9</td>
<td>12 / 24 / 48</td>
<td>56</td>
<td>V</td>
</tr>
<tr>
<td>Current I_{DC}</td>
<td>-</td>
<td>10</td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>Motor consumption when stopped without holding W_0</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>W</td>
</tr>
</tbody>
</table>

Input Specifications

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input impedance $R_{IN,\text{DIG}}$</td>
<td>-</td>
<td>57</td>
<td>-</td>
<td>Ω</td>
</tr>
<tr>
<td>Input impedance $R_{IN,\text{ANA/PWM}}$</td>
<td>-</td>
<td>69</td>
<td>-</td>
<td>Ω</td>
</tr>
<tr>
<td>Low logic level on inputs $V_{IL,\text{DIG}}$</td>
<td>0</td>
<td>-</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>High logic level on inputs $V_{IH,\text{DIG}}$</td>
<td>4</td>
<td>-</td>
<td>50</td>
<td>V</td>
</tr>
<tr>
<td>Low logic level on inputs $V_{IL,\text{PWM}}$</td>
<td>0</td>
<td>-</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>High logic level on inputs $V_{IH,\text{PWM}}$</td>
<td>7.5</td>
<td>-</td>
<td>50</td>
<td>V</td>
</tr>
</tbody>
</table>

Output Specifications

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low logic level on outputs $V_{OL,\text{R} = 4,K7,Ω,,V_{DC} = 24,V}$</td>
<td>0</td>
<td>-</td>
<td>0.2</td>
<td>V</td>
</tr>
<tr>
<td>High logic level on outputs $V_{OL,R = 4,K7,Ω,,V_{DC} = 24,V}$</td>
<td>$V_{DC} - 0.5,V$</td>
<td>-</td>
<td>V_{DC}</td>
<td>V</td>
</tr>
<tr>
<td>PNP open collector type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.2. Generic Data

General Specifications

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient motor temperature</td>
<td>-30 to +70</td>
<td>°C</td>
</tr>
<tr>
<td>Insulation class (compliant with directive IEC 60085)</td>
<td>E</td>
<td>/</td>
</tr>
<tr>
<td>Ingress protection (excluding output shaft)</td>
<td>IP65M</td>
<td>/</td>
</tr>
</tbody>
</table>

C.MO.SAV.00006.FR_V5
January 12th, 2016

Page 26/224
8.3. Control Logic Bundle

This consists of a UL approved cable Style 2464 80°C 300 V, 500 mm long as standard, fitted with a 12-pin MOLEX connector part number 43025-1200.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Type</th>
<th>Wire Color (AWG24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Input no. 1 – Digital</td>
<td>Green</td>
</tr>
<tr>
<td>2</td>
<td>Input no. 2 – Digital</td>
<td>Yellow</td>
</tr>
<tr>
<td>3</td>
<td>Input no. 3 – Digital</td>
<td>White</td>
</tr>
<tr>
<td>4</td>
<td>Input no. 4 – Digital</td>
<td>White/Brown</td>
</tr>
<tr>
<td>5</td>
<td>Input no. 5 – Analog setpoint or PWM (or Digital)</td>
<td>Blue</td>
</tr>
<tr>
<td>6</td>
<td>Input no. 6 – Analog setpoint or PWM (or Digital)</td>
<td>Orange</td>
</tr>
<tr>
<td>7</td>
<td>Logic ground – 0 VDC</td>
<td>Black</td>
</tr>
<tr>
<td>8</td>
<td>Logic ground – 0 VDC</td>
<td>White/Black</td>
</tr>
<tr>
<td>9</td>
<td>Output no. 1 – Digital or PWM</td>
<td>Brown</td>
</tr>
<tr>
<td>10</td>
<td>Output no. 2 – Digital or PWM</td>
<td>Purple</td>
</tr>
<tr>
<td>11</td>
<td>Output no. 3 – Digital</td>
<td>Red</td>
</tr>
<tr>
<td>12</td>
<td>Output no. 4 – Digital</td>
<td>Gray</td>
</tr>
</tbody>
</table>

A label attached to the motor summarizes this information:

![Figure 2](image)

Connector part numbers to be used for connection:
- On a card: MOLEX series 43045
- On a cable: MOLEX series 43020

With cables more than 3 m long, tests must be performed in situ.

![Figure 3](image)
8.4. Power Supply Cable

<table>
<thead>
<tr>
<th>Type</th>
<th>Wire Color (AWG16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply: 12 VDC → 48 VDC</td>
<td>Brown</td>
</tr>
<tr>
<td>Power ground: 0 VDC</td>
<td>Blue</td>
</tr>
</tbody>
</table>

The power supply cable is UL approved Style 2517 105°C 300 V, 500 mm long as standard.

When a cable extension is used, the cable cross-section size should depend on the current drawn and the cable length.
9. MOTOR ELECTRICAL CONNECTION

9.1. Power Connection
We recommend grounding the motor housing.

Power connection diagram.

![Power connection diagram](image)

1. Include capacitors to smooth out inrush currents. Recommended value 1000 µF/A drawn.
2. Optional. The ballast circuit eliminates voltage surges produced when braking. See next section.

The product is not protected against polarity reversals on the power cable.
A polarity reversal can damage the product irreversibly.

9.1.1. Ballast Circuit
When the motor brakes, the kinetic energy stored in the inertias during rotation is returned to the power supply and generates a voltage surge. This voltage surge can be destructive for the motor or for devices connected to the power supply.
In the event of frequent braking, **an external ballast circuit must be used**.
It is always necessary to conduct tests to check what size it should be.
9.1.1.1. Proposed Ballast Circuit Diagram

The diagram below allows the braking energy to be dissipated into a resistor, thus limiting voltage surges at the motor terminals.

![Ballast Circuit Diagram](image)

9.1.1.2. Determining the Size of the R12 Resistor (R_{Ballast})

The higher the braking current, the lower the resistor value. Typical values are around several Ohms. With V the rotation speed in revolutions per minute and J the inertia in Kg.m2, the energy E in Joules stored in the inertia is given by:

$$E = \frac{\pi^2}{1800} \times J \times V^2$$

If t is the braking duration in seconds, the power P_1 dissipated during this time will be:

$$P_1 = \frac{E}{t}$$

Note: The time t is set via the value of the deceleration ramps in the HMI.

If T is the time interval between 2 braking operations in seconds, the dissipated power P_2 will be:

$$P_2 = \frac{P_1}{T}$$

The resistor should be large enough to dissipate the power P_2 while tolerating peaks at P_1.
It should be noted however that this is a simplified and somewhat pessimistic calculation since it does not take account of the energy stored in the capacitors, nor that lost during friction, the gearbox, etc.

9.1.1.3. Voltage Breaking Capacity Selection

The voltage breaking capacity should be selected:
- Depending on the power supply
- Depending on the other devices connected to this power supply

If your power supply does not tolerate current feedback, place a diode in series upstream of the ballast circuit to protect it.

The voltage breaking capacity usually selected is between +10% and +20% of the supply voltage.

E.g.: For 24 VDC the voltage breaking capacity would be 28 VDC.

List of components for the usual operating voltages:

<table>
<thead>
<tr>
<th>Nominal voltage</th>
<th>12V</th>
<th>24V</th>
<th>32V</th>
<th>48V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage breaking capacity</td>
<td>14V</td>
<td>28V</td>
<td>36V</td>
<td>52V</td>
</tr>
<tr>
<td>D1</td>
<td>SMBJ14A</td>
<td>SMBJ28A</td>
<td>SMBJ36A</td>
<td>SMBJ54A</td>
</tr>
<tr>
<td>R13</td>
<td>0R</td>
<td>560R 0.5W</td>
<td>1K 1W</td>
<td>2K2 2W</td>
</tr>
<tr>
<td>R5</td>
<td>15K 1%</td>
<td>4K32 1%</td>
<td>3K09 1%</td>
<td>1K95 1%</td>
</tr>
</tbody>
</table>

9.1.2. EMC Protection

In order to ensure that the product is compatible with EMC standards IEC 61000-6-1, IEC 61000-6-2, IEC 61000-6-3, IEC 61000-6-4, we recommend:
- Connecting the motor to ground while limiting length of the grounding strip,
- Adding capacitors on the main power supply.

We recommend 1000 µF per amp drawn.
9.2. Protection

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTECTION</td>
</tr>
<tr>
<td>The product has internal protection devices that switch off the motor power supply when activated. As the motor is no longer controlled, driving loads can decrease.</td>
</tr>
<tr>
<td>• The system manufacturer is responsible for complying with all the applicable safety rules in the event of product failure.</td>
</tr>
<tr>
<td>Failure to comply with these precautions will result in death or serious injury.</td>
</tr>
</tbody>
</table>

9.2.1. Voltage Protection

The product incorporates protection against voltage surges and undervoltages.

Protection against voltage surges:
The voltage surge threshold can be set in the HMI between 12 and 57 V (set at 57 V by default).
When the supply voltage exceeds the threshold, the product automatically switches to ERROR mode. In ERROR mode the motor is no longer controlled.
To reset the motor:
- The supply voltage must be at least 1 V below the threshold value.
- The motor inputs must be set to STOP mode.

Protection against undervoltages:
When the supply voltage falls below 8 V, the product automatically switches to ERROR mode. In ERROR mode the motor is no longer controlled.
To reset the motor:
- The supply voltage must be higher than 9 V.
- The motor inputs must be set to STOP mode.

9.2.2. Temperature Protection

The product incorporates temperature protection in the form of a temperature sensor on the motor pilot control card.

Temperature protection:
When the internal temperature exceeds 110°C, the product automatically switches to ERROR mode. In ERROR mode the motor is no longer controlled.
To reset the motor:
- The temperature must be less than 90°C.
- The motor inputs must be set to STOP mode.

9.2.3. Current Limiting

The product incorporates internal current limiting. This limiting directly affects the motor in terms of hardware. This limiting automatically restricts the current to 17 A in the motor phases.
If this limit is reached, it results in a loss of motor performance.

This product is not designed to operate continuously with this limiting (see the "Electrical Data" section).
9.3. USB Connection

USB connection requires a type B micro-USB socket on the motor. The cable must be less than 3 m long. Possible cable part number: MOLEX 68784-0003.

Connection procedure

- Carefully remove the black stopper from the motor to reveal the Micro USB-B connector. The stopper has a retainer to keep it attached to the motor.

- Insert the USB cable and install the drivers as instructed.

Take care never to touch the connector or contacts inside the motor with your fingers or any inappropriate object.

Once finished, it is essential to replace the stopper carefully, to maintain the motor seal and protect the connector from any contact.

Simply pressing your finger in the middle of the stopper will close it properly.
Incorrect stopper fitting

Figure 9

Figure 10

Correct stopper fitting

Figure 11

Figure 12
9.4. Input/Output Connection

9.4.1. Equivalent Input Diagram

NPN digital inputs

Figure 13

Analog/PWM/digital inputs

Figure 14
9.4.2. Equivalent Output Diagram

PNP outputs with max. 50 mA open collector.
Include a pull down resistor (recommended value 4.7 kΩ).

Caution: The output level is the same as the motor supply voltage:
if \(V_{DC} = 48 \text{V} \) then \(\text{Out1}/\text{Out2}/\text{Out3}/\text{Out4} = 48 \text{ V} \).
In the event of rejection, this voltage increases accordingly, and can rise up to 57 V maximum (voltage threshold value).
If your application necessitates limiting the voltage value of these outputs, implement the diagram below.
10. INSTALLATION OF THE DCMIND-SOFT HMI

10.1. Introduction
To configure motors in the SMi21 DCmind Brushless range, Crouzet provides a user-friendly HMI that is easy to use. By means of a communication interface, the HMI establishes the connection between the PC and the motor and can be used to configure the motor and adapt its operation to the application.

10.2. System Required
The HMI is compatible with the following operating systems:
- Windows XP Family & Professional (with Framework version 3.5 minimum: supplied on USB stick)
- Windows Vista
- Windows 7 (32 & 64-bit)

The HMI installation files are supplied on the USB stick in the programming kit and are available for download from the Internet at the following address: http://www.crouzet.com/

10.3. Installation of the USB Drivers
Run the "Driver Motor.exe" file in the “Driver” folder:

Figure 16

Figure 17
10.4. Installation of the Crouzet DCmind-Soft HMI

Run the “Setup_DCmind_Soft_Vxxx.msi” file and follow the instructions:

N.B.:
- When installing the "DCmind-Soft" HMI, check that Bluetooth is disabled on the PC.
- The USB drivers must always be installed upstream.

Figure 18: Steps 1 and 2

Figure 19: Steps 3 and 4

Once installation is complete, the PC software can be launched directly via the "DCmind-Soft" icon on the desktop.

Note: To uninstall the "DCmind-Soft" application, follow the standard Windows procedure:
- "Start"
- "Control Panel"
- "Add or Remove Programs"
- "DCmind-Soft"
- "Remove"
Note: For PCs running Windows XP, the version of Framework may not be recent enough to be able to install the "DCmind-Soft" HMI. On launching the setup, the HMI automatically informs the user of this problem by displaying the following window:

![Figure 20]

We recommend that you download the latest available version of Framework from the Microsoft website. Should no internet connection be available, a minimum version of Framework is supplied on the USB stick in the programming kit.

To install version 3.5 of Framework supplied on the USB stick, run the "dotnetfx35.exe" file and follow the instructions:

![Figure 21]

Tick the box "I have read and accept the license terms", then press the "Install >" button.

![Figure 22]
During installation, Windows tries to connect to the server to download the Framework multi-language package (this may take several minutes as 5 attempts are made to connect to the server). After 5 attempts, the software is installed directly via the setup supplied on the USB stick:

Figure 23

Once installation of Framework 3.5 is complete, try again to install the "DCmind-Soft" HMI, referring to the "Installation of the Crouzet DCmind-Soft HMI" section in this document.

Figure 24
10.5. Description of the Main Window

Once all the installations are complete (drivers + HMI), connect the motor to the PC and launch the HMI by double-clicking on the icon below:

The HMI home page appears:

- **Application programs:**
 - The application programs are grouped together with similar applications (valve, conveyor belt, machine, etc.).
 - They enable quick start-up with completion of just a few key application values.
 - Each application program is based on a preconfigured expert program. After testing the motor a few times in the application, the user can refine the motor operation by accessing all the adjustment parameters via the expert program linked to the application program and changing the pre-filled values.

- **Expert programs:**
 - The expert programs are grouped together with similar programs (P1xx, P2xx, etc position control, V1xx, V2xx speed control, C1xx, C2xx torque control).
 - These are generic programs, not specific to any application. They can be used to access all the options and settings.
They can be used directly, without going via the “application program” step and they offer a wider choice of uses. The contextual help window gives a description of the selected application when you hover over it with the mouse cursor.

Note: DCmind-Soft is constantly being improved. The latest available update can be downloaded from our website http://www.crouzet.com/

Description of the tabs on the main menu bar:

- **Language**: HMI language selection
- **Bootloader**: Board firmware update
- **Motor Information**: Can be used to find out information about the motor when it is connected

Figure 27

"Motor Information" window

Figure 28
The "Help" tab contains the SMi21 DCmind Brushless motors user manual in .pdf format.

10.6. Motor Connection

To connect the motor, link the motor and the PC using the USB B to USB A micro cable (supplied in the programming kit), power up the motor and click on "Motor Connection" in the main menu bar. The following window appears:

![Figure 29](image)

Click the "Autodetect" button to start the automatic motor search. If a motor is connected to the PC, it is automatically detected and the following window appears:

![Figure 30](image)

![Figure 31](image)
Click "OK", the motor is now connected and ready to be used.

If "Motor not detected" appears in the information window, check that the motor is correctly supplied with power, the micro USB B to USB A cable is plugged in correctly and repeat the procedure.

10.7. Updating the Firmware

To update the version of the software embedded in the motor, a bootloader is used via USB communication. This operation can only be performed by advanced users, as if done incorrectly this could result in the product not working.

Power up the motor and click "Bootloader" in the main menu bar (entire memory completely rewritten), the following window appears:

![Figure 32]

A warning message appears asking to confirm the firmware update request and to avoid any incorrect action:

![Figure 33]

To start the update, click "Yes" and select the .hex program supplied by CROUZET:
Click the "Open" button, updating begins:

When the update is complete, the following window appears, meaning that loading has been successful:
11. APPLICATION PROGRAMS

11.1. Description

Select an application group from the list of application programs, then one of the icons corresponding to your application.

![Figure 36](image)

![Figure 37](image)

![Figure 38](image)
11.2. Description of the Monitoring Part

The monitoring part of the HMI is common to all the expert and application program tabs.

This zone uses graphic icons to indicate the type of program I/O used (in this case 4 digital inputs, 2 analog setpoint inputs, 2 PWM outputs and 2 digital outputs).

This zone describes the status of the connection between the HMI and the motor (green for connected and red for not connected). It gives in real time (once a second) the value of the various measurements taken on the motor (voltage, temperature, speed, position and torque).

States of the various program digital I/O (green for active and blue for inactive).

For the analog setpoints, the user can display their value (rpm, rpm/sec, mN.m, etc.) on the IN5 and IN6 dial faces.

The type of error detected can be viewed on this tab. PWM/Pulse or Frequency type outputs are not included in this tab.
11.3. "Valve" Group

11.3.1. "Valve 4 positions" Application Program

The "Valve 4 positions" application program invokes the P101 expert program. The user can switch to this expert mode at any time to access all the settings by clicking the "Expert Mode" button. The values preset in application mode will be loaded directly in expert mode. It is then impossible to return to this application program.

The user can press the "STOP" button at any time to stop the application quickly. To restart the motor, the program needs to be reloaded.

Once the settings are complete, press the "Load Program" button to configure the motor.

Note: Each time you power ON the power supply or a program is loaded, it is necessary to perform the homing sequence.

11.3.1.1. Inputs/Outputs Configuration

Refer to the "I/O Connection" section.

Inputs:

- IN1: If 0 → No position setpoint, if 1 → Setpoint = "Position 1" Parameter
- IN2: If 0 → No position setpoint, if 1 → Setpoint = "Position 2" Parameter
- IN3: If 0 → No position setpoint, if 1 → Setpoint = "Position 3" Parameter
- IN4: If 0 → No position setpoint, if 1 → Setpoint = "Position 4" Parameter
- IN5: If 0 → No action, if 1 → Launch homing phase
- IN6: If 0 → Stop, if 1 → Run

N.B.: if more than 1 input IN1 to IN4 is activated at the same time, the motor switches to stop mode.
Outputs: Don't forget to fit the pull-down resistors on each of the outputs.

- OUT1: If 0 → setpoint position not reached, if 1 → setpoint position reached.
- OUT2: If 0 → homing phase complete, if 1 → homing phase in progress or not performed.
- OUT3: If 0 → motor stopped, if 1 → motor running.
- OUT4: If 0 → no error, if 1 → error detected.

11.3.1.2. Application Settings

- The user can give a 4-character name in "Project name" which is stored in the motor and appears in the "Motor Information" window.
- If it has been saved on the PC by the user, this name is used by default. For more details, see the "Saving Parameters" paragraph.
- The "Number of rotation(s) to close the valve" and "Mechanical ratio between the motor and the valve" parameters are used to calculate the application total stroke in number of motor revolutions:

\[
\text{Total course [Rotation motor]} = \text{Nb of rotations Closing valve} \times \eta \text{ Valves vs Motor}
\]

- The "Time to realize the total stroke" parameter is used to calculate the motor speed of rotation during the positioning phases:

\[
\text{Motor speed [RPM]} = \frac{\text{Total course [Rotation motor]} \times 60}{\text{Time total course [sec]}}
\]

The calculated value is given for information in the grayed-out box.

- The motor speed of rotation during the mechanical stop search phase (homing) is determined as follows:

\[
\text{Homing speed [RPM]} = \frac{\text{Motor speed [RPM]}}{5}
\]

11.3.1.3. Motor Configuration

- Used to configure the mechanical stop search phase (homing) by setting the "Homing torque" and the direction of valve closing.
- The nominal and maximum torques in the motor are determined from the "Homing torque" value as follows:

\[
\text{Nominal torque} = \text{Homing torque} \\
\text{Torque Maxi} = 2 \times \text{Homing torque}
\]

- For information, the maximum torque value seen by the valve during operation is given in the grayed-out box.

11.3.1.4. Valve Positioning

- The user has the option of setting 4 setpoint position parameters as a percentage of valve opening.
- By default, position 1 corresponds to detection of the mechanical stop (valve closed). If the user wishes to add an offset to avoid mechanical shocks during valve closing, he should change the "Position 1" parameter accordingly.
- By default, position 4 corresponds to the application total stroke (valve open).
- For information, all 4 positions are given in number of pulses (4096 pulses per motor revolution) in the grayed-out boxes.
11.3.2. "Valve 30 positions" Application Program with 1 Mechanical Stop

The "Valve 30 positions" application program invokes the P111 expert program. The user can switch to this expert mode at any time to access all the settings by clicking the "Expert Mode" button. The values preset in application mode will be loaded directly in expert mode. It is then impossible to return to this application program.

The user can press the "STOP" button at any time to stop the application quickly. To restart the motor, the program needs to be reloaded. Once the settings are complete, press the "Load Program" button to configure the motor.

Note: Each time you power ON the power supply or a program is loaded, it is necessary to perform the homing sequence.

11.3.2.1. Inputs/Outputs Configuration

Refer to the "I/O Connection" section.

Inputs:
- IN1 to IN5: 32 possible combinations:
 - IN1 = IN2 = IN3 = IN4 = IN5 = 0 → Stop.
 - IN1 = 1, all 4 others = 0 → Launch homing phase.
 - The other 30 combinations correspond to the 30 position setpoints.
- IN6: Not used.

Outputs:

Figure 42

The "Valve 30 positions" application program invokes the P111 expert program. The user can switch to this expert mode at any time to access all the settings by clicking the "Expert Mode" button. The values preset in application mode will be loaded directly in expert mode. It is then impossible to return to this application program.

The user can press the "STOP" button at any time to stop the application quickly. To restart the motor, the program needs to be reloaded. Once the settings are complete, press the "Load Program" button to configure the motor.

Note: Each time you power ON the power supply or a program is loaded, it is necessary to perform the homing sequence.

11.3.2.1. Inputs/Outputs Configuration

Refer to the "I/O Connection" section.

Inputs:
- IN1 to IN5: 32 possible combinations:
 - IN1 = IN2 = IN3 = IN4 = IN5 = 0 → Stop.
 - IN1 = 1, all 4 others = 0 → Launch homing phase.
 - The other 30 combinations correspond to the 30 position setpoints.
- IN6: Not used.
Outputs: Don't forget to fit the pull-down resistors on each of the outputs.

- OUT1: If 0 → setpoint position not reached, if 1 → setpoint position reached.
- OUT2: If 0 → homing phase complete, if 1 → homing phase in progress or not performed.
- OUT3: If 0 → motor stopped, if 1 → motor running.
- OUT4: If 0 → no error, if 1 → error detected.

11.3.2.2. Application Settings

- The user can give a 4-character name in "Project name" which is stored in the motor and appears in the "Motor Information" window.
- If it has been saved on the PC by the user, this name is used by default. For more details, see the "Saving Parameters" paragraph.
- The "Number of rotation(s) to close the valve" and "Mechanical ratio between the motor and the valve" parameters are used to calculate the application total stroke in number of motor revolutions:

\[
\text{Total course} = \text{Nb rotation closing valve } \times n_{\text{Valve vs Motor}}
\]

- The "Time to realize the total stroke" parameter is used to calculate the motor speed of rotation during the positioning phases:

\[
\text{Motor speed} [\text{RPM}] = \frac{\text{Total course} [\text{rotation motor}] \times 60}{\text{Times total course} [\text{sec}]}
\]

The calculated value is given for information in the grayed-out box.

- The motor speed of rotation during the mechanical stop search phase (homing) is determined as follows:

\[
\text{Homing speed} [\text{RPM}] = \frac{\text{Motor speed} [\text{RPM}]}{5}
\]

11.3.2.3. Motor Configuration

- Used to configure the mechanical stop search phase (homing) by setting the "Homing torque" and the direction of valve closing.
- The nominal and maximum torques in the motor should be determined from the "Homing torque" value as follows:

\[
\text{Nominal torque} = \text{Homing torque}
\]

\[
\text{Maxi torque} = 2 \times \text{Homing torque}
\]

- For information, the maximum torque value seen by the valve during operation is given in the grayed-out box.

11.3.2.4. Position Table

- The user is not able to change the position setpoints, they will automatically be defined with between 2 and 30 equal positions, according to the defined total stroke and the "Number of positions" parameter. To change them, you need to change to "Expert Mode".
- By default, position 1 corresponds to detection of the mechanical stop (valve closed).
- By default, the last position corresponds to the application total stroke (valve open).
• For information, the position setpoints are given in number of valve rotations and number of pulses (4096 pulses per motor revolution).
11.4. "Conveyor Belt" Group

11.4.1. "Conveyor Belt 0-10V" Application Program

The "Conveyor Belt 0-10V" application program invokes the V101 expert program. The user can switch to this expert mode at any time to access all the settings by clicking the "Expert Mode" button. The values preset in application mode will be loaded directly in expert mode. It is then impossible to return to this application program. The user can press the "STOP" button at any time to stop the application quickly. To restart the motor, the program needs to be reloaded. Once the settings are complete, press the "Load Program" button to configure the motor.

11.4.1.1. Inputs/Outputs Configuration

Refer to the "I/O Connection" section.

Inputs:

- **IN1**: If 0 → Stop, if 1 → Run
- **IN2**: If 0 → motor running in reverse (CCW), if 1 → motor running forward (CW)
- **IN3**: If IN3 = 1 and IN1 = 1 and IN6 = 0, application of a 150 mNm holding torque.
- **IN4**: If 0 → no action, if 1 → Quick start by short-circuiting the coils. This action takes priority over the other commands.
- **IN5**: 0-10 V control. Sets the motor acceleration and deceleration. 40,000 rpm/sec for 0 V (maximum acceleration) and 100 rpm/sec for 10 V.
- IN6: 0-10 V control. Sets the speed setpoint. 0 V for 0 rpm and 10 V for the maximum motor speed defined by the user.

Outputs: Don't forget to fit the pull-down resistors on each of the outputs.

- OUT1: Provides information on the motor speed value in PWM.
 - Cyclical ratio = 0% → speed = 0 rpm
 - Cyclical ratio = 100% → speed = maximum speed.

- OUT2: Provides information on the real torque value in PWM.
 - Cyclical ratio = 0% → torque = 0 mNm
 - Cyclical ratio = 100% → torque = 1 Nm.

- OUT3: If 0 → motor running, if 1 → motor stopped.
- OUT4: If 0 → error detected, if 1 → no error.

11.4.1.2. Application Settings

- The user can give a 4-character name in "Project name" which is stored in the motor and appears in the "Motor Information" window.
- If it has been saved on the PC by the user, this name is used by default. For more details, see the "Saving Parameters" paragraph.
- The maximum motor speed corresponding to a voltage of 10 V is calculated as follows:

\[
Setpoint\ motor\ speed_{10V}[RPM] = \frac{Max\ speed\ Tapis\ [m.s^{-1}] \times 60}{Speed\ step\ [m.tr^{-1}]}
\]

The calculated value is given for information in the grayed-out box.
11.4.2. "Conveyor Belt PWM" Application Program

The "Conveyor Belt PWM" application program invokes the V101 expert program. The user can switch to this expert mode at any time to access all the settings by clicking the "Expert Mode" button. The values preset in application mode will be loaded directly in expert mode. It is then impossible to return to this application program.

The user can press the "STOP" button at any time to stop the application quickly. To restart the motor, the program needs to be reloaded.

Once the settings are complete, press the "Load Program" button to configure the motor.

11.4.2.1. Inputs/Outputs Configuration

Refer to the "I/O Connection" section.

Inputs:

- IN1: If 0 → Stop, if 1 → Run
- IN2: If 0 → motor running in reverse (CCW), if 1 → motor running forward (CW)
- IN3: If IN3 = 1 and IN1 = 1 and IN6 = 0, application of a 150 mNm holding torque.
- IN4: If 0 → no action, if 1 → Quick start by short-circuiting the coils. This action takes priority over the other commands.
- IN5: PWM control. Sets the motor acceleration and deceleration. 40,000 rpm/sec for 0% PWM (maximum acceleration) and 100 rpm/sec for 100% PWM.
- IN6: PWM control. Sets the speed setpoint. 0% PWM for 0 rpm and 100% PWM for the maximum motor speed defined by the user.
Outputs: Don't forget to fit the pull-down resistors on each of the outputs.

- **OUT1**: Provides information on the motor speed value in PWM.
 - Cyclical ratio = 0% → speed = 0 rpm
 - Cyclical ratio = 100% → speed = maximum speed.

- **OUT2**: Provides information on the real torque value in PWM.
 - Cyclical ratio = 0% → torque = 0 mNm
 - Cyclical ratio = 100% → torque = 1 Nm.

- **OUT3**: If 0 → motor running,
 - if 1 → motor stopped.

- **OUT4**: If 0 → error detected,
 - if 1 → no error.

11.4.2.2. Application Settings

- The user can give a 4-character name in "Project name" which is stored in the motor and appears in the "Motor Information" window.
- If it has been saved on the PC by the user, this name is used by default. For more details, see the "Saving Parameters" paragraph.
- The maximum motor speed corresponding to a PWM signal with 100% cyclical ratio is calculated as follows:

\[
\text{Setpoint motor speed}_{100\% \text{PWM}[\text{RPM}]} = \frac{\text{Max speed} \text{[m.s}^{-1}] \times 60}{\text{Speed step} \text{[m.tr}^{-1}]} \]

The calculated value is given for information in the grayed-out box.
11.4.3. « Conveyor with stop on detection » Application program

The « Conveyor belt with stop on detection » application program invokes the V202 expert program. The user can switch to this expert mode at any time to access all the settings by clicking the "Expert Mode" button. The values preset in application mode will be loaded directly in expert mode. It is then impossible to return to this application program.

The user can press the "STOP" button at any time to stop the application quickly. To restart the motor, the program needs to be reloaded.

Once settings are complete, press the "Load Program" button to configure the motor.

11.4.3.1. Inputs/Outputs Configuration

Refer to the "I/O Connection" section.

Inputs: (0 = no voltage applied; 1 = voltage applied on the input)

- **IN1**: « ON/OFF » 0 → Stop, 1 → Run
- **IN2**: « Usual belt direction » 0 → Direction from program setting, 1 → Direction inverted

Note: this input is useful when a same program setting is needed for conveyors having to run in opposite directions.

- **IN3**: « Reverse direction » 0 → No reverse, 1 → Reverses and inhibits IN4
- **IN4**: « Sensor » 0 → Nothing detected, 1 → Stop required (if IN3 = 0)
- **IN5**: « Speed » Analog input (0/10V or PWM) → Speed setting
- **IN6**: « Position » Analog input (0/10V or PWM) → Stop distance setting
Outputs: Don’t forget to fit the pull-down resistors on each of the outputs.

- **OUT1**: Target
 - 0: Stop position not reached
 - 1: Stop position reached
- **OUT2**: Direction
 - 0: Motor CCW (counter clock wise)
 - 1: Motor CW (clock wise)
- **OUT3**: Run
 - 0: No run
 - 1: Motor running
- **OUT4**: Error
 - 0: No error detected
 - 1: Error detected.

11.4.3.2. Application Settings

- The user can give a 4-character name in "Project name" which is stored in the motor and appears in the "Motor Information" window.
- If it has been saved on the PC by the user, this name is used by default. For more details, see the "Saving Parameters" paragraph.
- Parameters « Max. belt speed » and « Mechanical ratio » allow to define the maximum motor speed at 10V input.
- Maximum motor speed is calculated as following:
 \[\text{Motor speed}_{10V}[\text{RPM}] = \frac{\text{Max belt speed} [\text{m.s}^{-1}] \times 60}{\text{Mechanical ratio} [\text{m.tr}^{-1}]} \]

 This value is indicated in the grey box for information.
- Belt conveyor stop distance is calculated as following:
 Parameters « Max. stop distance » and « Mechanical ratio » are used to calculate the maximum rotation of the motor in number of pulses (4096 pulses represent one motor turn).
 \[\text{Motor pulses}_{10V}[\text{Pulses}] = \frac{\text{Max. stop distance} [\text{cm}] \times 4096}{100 \times \text{Mechanical ratio} [\text{m.tr}^{-1}]} \]

 This value is indicated in the grey box for information.
- « Motor direction » area allows to define the motor direction by defect (when IN2 = 0). Conveyor belt manufacturers ask for good use, that conveyor’s motor pulls the belt which brings objects (not push).
- « Command" area allows to define which signal type will be used for IN5 and IN6.
- Option “Via PLC” allows to precise if the “sensor” input is driven by PLC (if selected) or directly by the object’s sensor (if not selected). When “Via PLC” is not selected, motor memorizes the “sensor” detections and goes to stop position even if the detected object exceeds the detector. To restart the conveyor in speed, an OFF/ON action on IN1 has to be done.
- Parameter « minimum pulse duration » allows to filter IN4 sensor input signal. The signal has to exceed this time before to be taken in count.
11.5. "Machine" Group

11.5.1. "Worm Gear" Application Program

The "Worm Gear" application program uses a preset P111 expert program. The user can switch to this expert mode at any time to access all the settings by clicking the "Expert Mode" button. The values preset in application mode will be loaded directly in expert mode. It is then impossible to return to this application program. The user can press the "STOP" button at any time to stop the application quickly. To restart the motor, the program needs to be reloaded. Once the settings are complete, press the "Load Program" button to configure the motor.

Note: Each time you power ON the power supply or a program is loaded, it is necessary to perform the homing sequence.

11.5.1.1. Inputs/Outputs Configuration

Refer to the "I/O Connection" section.

Inputs:
- IN1 to IN5: 32 possible combinations:
 - IN1 = IN2 = IN3 = IN4 = IN5 = 0 → Stop
 - IN1 = 1, all 4 others = 0 → Launch homing phase
 - The other 30 combinations correspond to the 30 position setpoints
- IN6: Switch limit input if « switch » is selected as “type of stop”
Outputs: Don't forget to fit the pull-down resistors on each of the outputs.

- OUT1: If 0 → setpoint position not reached, if 1 → setpoint position reached.
- OUT2: If 0 → homing phase complete, if 1 → homing phase in progress or not performed.
- OUT3: If 0 → motor stopped, if 1 → motor running.
- OUT4: If 0 → no error, if 1 → error detected.

11.5.1.2. Initialization Phase

- The user can give a 4-character name in "Project name" which is stored in the motor and appears in the "Motor Information" window.
- If it has been saved on the PC by the user, this name is used by default. For more details, see the "Saving Parameters" paragraph.
- Select the type of stop, either "Mechanical" if the stop is achieved by detection of an obstacle on the application, or "Switch" if a limit switch is used in the application.
- Define the motor direction of rotation used to reach the stop selected above (forward (CW) rotation by default).
- To protect the application and prevent the mechanical stop being reached each time it returns to position zero, a position offset (in mm) can be set between the mechanical stop and position 1 corresponding to the application reference.

11.5.1.3. Application Settings

- To determine the maximum operating speed during the positioning phases, the user should enter the maximum linear speed in mm/s and the "Step of the screw" and "Mechanical ratio between the motor and the screw" adjustment parameters are used to obtain a motor speed of rotation according to the formula below:

\[\text{Motor speed [RPM]} = \frac{\text{Linear speed [mm/s]} \times \text{Step Reduction} \times 60}{\text{Step Screw [mm/rotation]}} \]

- The motor speed of rotation during the mechanical stop search phase (homing) is determined as follows:

\[\text{Homing speed [RPM]} = \frac{\text{Motor speed [RPM]}}{5} \]

11.5.1.4. Motor Configuration

- To determine the nominal torque during operation, the user should enter the maximum thrust for his application in Newtons and the "Step of the screw" and "Mechanical ratio between the motor and the screw" adjustment parameters are used to obtain a nominal motor torque using the following formula:

\[\text{Motor torque [mN.m]} = \frac{1}{2\pi} \times \frac{\text{Pushing [N]} \times \text{Step Screw [mm/tour]}}{\text{Step Reduction}} \]

- The homing and maximum torques for detecting the mechanical stop in the motor are determined from the "Motor Torque" value defined above as follows:

\[\text{Homing torque} = \text{Motor torque} \]
Maxi torque = 2 × Motor torque

11.5.1.5. Position Table

- The user is not able to enter the 2 to 30 position setpoints himself, they are automatically defined with between 2 and 30 equidistant positions, according to the defined total stroke "Total stroke length" and the "Number of positions" parameter.
- Position 1 corresponds to detection of the mechanical stop (as close as possible to the offset).
- The last position corresponds to the application total stroke.
- In the table, the position setpoints are given in mm.
11.5.2. "Worm Gear (Proportional)" Application Program

The "Worm Gear (Proportional)" application program uses the P201 expert program. The user can switch to this expert mode at any time to access all the settings by clicking the "Expert Mode" button. The values preset in application mode will be loaded directly in expert mode. It is then impossible to return to this application program.

The user can press the "STOP" button at any time to stop the application quickly. To restart the motor, the program needs to be reloaded. Once the settings are complete, press the "Load Program" button to configure the motor.

Note: Each time you power ON the power supply or a program is loaded, it is necessary to perform the homing sequence.

11.5.2.1. Inputs/Outputs Configuration

Refer to the "I/O Connection" section.

Inputs:
- **IN1** and **IN2**: 4 possible combinations:
 - [IN1-IN2] = [00] → Stop and error reset
 - [IN1-IN2] = [10] → Homing phase
 - [IN1-IN2] = [01] → Maintain actual position
 - [IN1-IN2] = [11] → Go to required position
- **IN3**: Switch limit input if « switch » is selected as "type of stop"
- **IN4**: High speed (if 0) or low speed (if 1) selection
- **IN5**: Proportional position setting – Coarse tuning
- **IN6**: Proportional position setting – Thin tuning
Outputs: Don’t forget to fit the pull-down resistors on each of the outputs.

- **OUT1**: Provides information on the motor speed value in PWM.
 - Cyclical ratio = 0% → speed = 0 rpm
 - Cyclical ratio = 100% → speed = 4000 rpm.

- **OUT2**: Provides information on the real torque value in PWM.
 - Cyclical ratio = 0% → torque = 0 mNm
 - Cyclical ratio = 100% → torque = maximum torque.

- **OUT3**: If 0 → motor running, if 1 → motor stopped.
- **OUT4**: If 0 → error detected, if 1 → no error.

11.5.2.2. Initialization Phase

- The user can give a 4-character name in "Project name" which is stored in the motor and appears in the "Motor Information" window.
- If it has been saved on the PC by the user, this name is used by default. For more details, see the "Saving Parameters" paragraph.
- Select the type of stop, either "Mechanical" if the stop is achieved by detection of an obstacle on the application, or "Switch" if a limit switch is used in the application.
- Define the motor direction of rotation used to reach the stop selected above (forward (CW) rotation by default).
- To protect the application and prevent the mechanical stop being reached each time it returns to position zero, a position offset (in mm) can be set between the mechanical stop and position 1 corresponding to the application reference.

11.5.2.3. Application Settings

- To determine the maximum operating speed during the positioning phases, the user should enter the maximum linear speed in mm/s and the "Step of the screw" and "Mechanical ratio between the motor and the screw" adjustment parameters are used to obtain a motor speed of rotation according to the formula below:

\[
\text{Maximum speed [RPM]} = \frac{\text{Maximum linear speed [mm/s]} \times \text{step reduction} \times 60}{\text{Step screw [mm/rotation]}}
\]

- By activating the digital input 4 (IN4 = 1), the user selects the low speed profile:

\[
\text{Low speed [RPM]} = \frac{\text{Maximum speed [RPM]}}{5}
\]

- The motor speed of rotation during the mechanical stop search phase (homing) is determined as follows:

\[
\text{Homing speed [RPM]} = \frac{\text{Maximum speed [RPM]}}{5}
\]

NB: Motor speed is restricted to max. 4000rpm in this program. If this value is exceeded, the writing becomes red colored and the loading of the parameters becomes impossible. It is strongly advised to check motor specifications before to configuring the application.
11.5.2.4. Motor Configuration

- To determine the maximum torque during operation, the user should enter the maximum thrust for his application in Newtons and the "Step of the screw" and "Mechanical ratio between the motor and the screw" and "Mechanical system efficiency" adjustment parameters are used to obtain a maximum motor torque using the following formula:

\[
\text{Maximum torque [mN.m]} = \frac{1}{2\pi} \times \frac{\text{Pushing [N]}}{\text{Step of the screw [mm/tour]}} \times 2 \\
\text{Nominal torque} = \frac{\text{Maximum torque}}{2}
\]

- To detect the mechanical end stop, the homing torque is automatically set to be equal to nominal torque.

NB: The max. torque has to don’t be higher than 1000 mNm. If this value is exceeded, the writing becomes red colored and the loading of the parameters becomes impossible. The real maximum torque value is limited per motor characteristics. It is strongly advised to check motor specifications before to configuring the application.

11.5.2.5. Position setpoint

- The user indicates the total stroke in mm of the application: parameter « Total stroke length ».
 The full stroke is achieved when both setpoints (IN5 and IN6) are at 10V. To travel this distance, the settings are distributed as follows:
 - Coarse setting: Input IN5 allows to travel 63/64th of the « total stroke length »
 - Thin setting: Input IN6 allows to travel 1/64th of the « total stroke length »

- The resolution of each of the two inputs IN5 and IN6 is given as an indication in the gray boxes in the « Position table – Input 5 and input 6 scale » zone:
 - Distance equivalent to an applied voltage of 1V
 - Distance equivalent to an applied voltage of 0,01V (resolution of the system)

Example: For a «Total stroke length » = 300 mm :

→ Input IN5 allows to travel: \(Stroke_{65} = \frac{63}{64} \times 300mm = 295,3125mm \) (for 10V applied)
 Meaning 29,53125 mm for 1V
 Meaning 0,2953125 mm for 0,01V

→ Input IN6 allows to travel: \(Stroke_{66} = \frac{1}{64} \times 300mm = 4,6875mm \) (for 10V applied)
 Meaning 0,46875 mm for 1V
 Meaning 0,0046875 mm for 0,01V
11.5.3. "Clamp" Application Program

The "Clamp" application program invokes the C101 expert program. The user can switch to this expert mode at any time to access all the settings by clicking the "Expert Mode" button. The values preset in application mode will be loaded directly in expert mode. It is then impossible to return to this application program.

The user can press the "STOP" button at any time to stop the application quickly. To restart the motor, the program needs to be reloaded.

Once the settings are complete, press the "Load Program" button to configure the motor.

11.5.3.1. Inputs/Outputs Configuration

Refer to the "I/O Connection" section.

Inputs:
- IN1: If 0 → Stop, if 1 → Run
- IN2: If 0 → motor running in reverse (CCW), if 1 → motor running forward (CW)
- IN3: Not used.
- IN4: If 0 → no action, if 1 → Quick start by short-circuiting the coils. This action takes priority over the other commands.
- IN5: 0-10 V control. Sets the motor torque ramp. 20,000 mNm/sec for 0 V (maximum ramp) and 100 mNm/sec for 10 V.
- IN6: 0-10 V control. Sets the torque setpoint. 0V for 0 mNm and 10V for the maximum motor torque defined by the user (value in the grayed-out box).
Outputs: Don't forget to fit the pull-down resistors on each of the outputs.

- OUT1: Provides information on the motor speed value in PWM.
 Cyclical ratio = 0% → speed = 0 rpm
 Cyclical ratio = 100% → speed = 4000 rpm.

- OUT2: Provides information on the real torque value in PWM.
 Cyclical ratio = 0% → torque = 0 mNm
 Cyclical ratio = 100% → torque = maximum torque.

- OUT3: If 0 → motor running, if 1 → motor stopped.
- OUT4: If 0 → error detected, if 1 → no error.

11.5.3.2. Application Settings

- The user can give a 4-character name in "Project name" which is stored in the motor and appears in the "Motor Information" window.
- If it has been saved on the PC by the user, this name is used by default. For more details, see the "Saving Parameters" paragraph.
- The maximum motor torque corresponding to a voltage of 10 V is calculated as follows:

 \[\text{Consigne Couple Moteur}_{10V}[\text{mNm}] = \frac{\text{Force Maxi Serrage \text{[N]}}}{\text{Rapport Pince/Moteur \text{[N/mNm]}}} \]

The calculated value is given for information in the grayed-out box.
11.6. « Dosing » group

11.6.1. Application program « Peristaltic pump »

The "Peristaltic pump" application program uses a preset V201 expert program. The user can switch to this expert mode at any time to access all the settings by clicking the "Expert Mode" button. The values preset in application mode will be loaded directly in expert mode. It is then impossible to return to this application program. The user can press the "STOP" button at any time to stop the application quickly. To restart the motor, the program needs to be reloaded. Once the settings are complete, press the "Load Program" button to configure the motor.

11.6.1.1. Inputs/Outputs Configuration

Refer to the "I/O Connection" section.

Inputs:
- **IN1**: ON/OFF 0 → Stop 1 → ON
- **IN2**: Mode 0 → Dosing mode 1 → Flow mode (speed)
- **IN3**: Direction / Go
 - In flow mode: 0 → Motor turns CCW 1 → Motor turns CW
 - In Dosing mode: 0 → No new dosing 1 → launches a new dose
 Note: When Dosing mode is selected, the IN3 signal has to be available during more than 15ms before to be taken in count.
- **IN4 + IN 5**: Coding Codes speed range or dose values depending on selected mode.
- **IN6**: Flow / Dose 0/10V analog input.
 - In Flow mode: Adjusts the flow value depending on the flow range selected (IN4 and I N5 coding).
In Dosing mode: Adjusts D4, the dose to deliver (IN4=IN5=1)

Outputs: Don't forget to fit the pull-down resistors on each of the outputs.

- **OUT1:** Mode
 - 0: Dosing mode
 - 1: Flow mode

- **OUT2:** Direction of rotation
 - 0: CCW
 - 1: CW

- **OUT3:** Target
 - In Dosing mode: 0 → Dose not completely delivered, 1 → Dose completed
 - In Flow mode: 0 → Motor is running, 1 → Motor doesn't move

- **OUT4:** Error
 - 0 → No error detected
 - 1 → Error detected

11.6.1.2. Application configuration

- The user can give a 4-character name in "Project name" which is stored in the motor and appears in the "Motor Information" window.

- If it has been saved on the PC by the user, this name is used by default. For more details, see the "Saving Parameters" paragraph.

- « Dose », « Time » and « ratio » parameters allow to calculate the motor parameters for each dose (IN4 + IN5) the position to move, speed to deliver the dose. Calculation is as following:

\[
\text{Position setting [Pulses]} = \frac{\text{Dose [ml]} \times 4096}{\text{Flow [m.tr}^{-1}] \times \text{Ratio}}
\]

\[
\text{Speed setting [RPM]} = \frac{\text{Dose [ml]} \times 60}{\text{Flow [m.tr}^{-1}] \times \text{Time [sec]} \times \text{Ratio}}
\]

For information, for each dose, the calculated speed is in grey boxes.

- For this program, speed ranges are fixed. You could modify them in going in “Expert mode”.

<table>
<thead>
<tr>
<th>IN 4</th>
<th>IN 5</th>
<th>Min. motor speed (rpm)</th>
<th>Max. motor speed (rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3000</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>900</td>
<td>2000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1800</td>
<td>3000</td>
</tr>
</tbody>
</table>
12. EXPERT PROGRAMS

12.1. Speed Programs

12.1.1. Types of Inputs in V100 Programs

The table below defines the function associated with each of the inputs in the 4 V100 programs (the color associated with the input number corresponds to that of the I/O bundle):

<table>
<thead>
<tr>
<th>Inputs</th>
<th>V101</th>
<th>V102</th>
<th>V103</th>
<th>V104</th>
</tr>
</thead>
<tbody>
<tr>
<td>In1</td>
<td>ON/OFF</td>
<td>ON/OFF</td>
<td>000 : "In6" setpoint speed</td>
<td>001 : Priority speed 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>010 : Priority speed 2</td>
<td>100 : Priority speed 3</td>
</tr>
<tr>
<td>In2</td>
<td>Direction</td>
<td>Direction</td>
<td>8 combinations: Coding 8 preprogrammed speeds</td>
<td></td>
</tr>
<tr>
<td>In3</td>
<td>Holding</td>
<td>Holding</td>
<td>00 : Fast stop</td>
<td>10 : CCW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01 : CW</td>
<td>01 : CW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 : Stop, disable error</td>
<td>11 : Stop, disable error</td>
</tr>
<tr>
<td>In4</td>
<td>Fast stop</td>
<td>Fast stop</td>
<td>00 : Fast stop</td>
<td>00 : Fast stop</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 : CCW</td>
<td>10 : CCW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01 : CW</td>
<td>01 : CW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 : Stop, disable error</td>
<td>11 : Stop, disable error</td>
</tr>
<tr>
<td>In5</td>
<td>Speed ramp</td>
<td>Nominal torque</td>
<td>00 : Speed (if In1 = In2 = In3 = 0)</td>
<td>Nominal torque</td>
</tr>
<tr>
<td>In6</td>
<td>Speed</td>
<td>Speed</td>
<td>Speed</td>
<td></td>
</tr>
</tbody>
</table>

Key:
- Digital type input
- Analog or PWM type input

12.1.2. Types of Inputs in V200 Programs

The table below defines the function associated with each of the inputs in the 2 V200 programs (the color associated with the input number corresponds to that of the I/O bundle):

<table>
<thead>
<tr>
<th>Inputs</th>
<th>V201 Speed Mode</th>
<th>V201 Position Mode</th>
<th>V202</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>ON / OFF</td>
<td>ON / OFF</td>
<td>ON / OFF</td>
</tr>
<tr>
<td>E2</td>
<td>Mode</td>
<td>Mode</td>
<td>Direction</td>
</tr>
<tr>
<td>E3</td>
<td>Direction</td>
<td>Validation de Consigne</td>
<td>Reverse</td>
</tr>
<tr>
<td>E4</td>
<td>00 = Speed Range 1</td>
<td>00 = Position 1</td>
<td>Sensor</td>
</tr>
<tr>
<td></td>
<td>10 = Speed Range 2</td>
<td>10 = Position 2</td>
<td>Speed Setpoint</td>
</tr>
<tr>
<td>E5</td>
<td>01 = Speed Range 3</td>
<td>01 = Position 3</td>
<td>Speed Setpoint</td>
</tr>
<tr>
<td></td>
<td>11 = Speed Range 4</td>
<td>11 = Position 4</td>
<td>Speed Setpoint</td>
</tr>
<tr>
<td>E6</td>
<td>Analog Speed Setpoint</td>
<td>Analog Position Setpoint</td>
<td>Position Setpoint</td>
</tr>
</tbody>
</table>

Key:
- Digital type input
12.1.3. Types of Outputs in V100 Programs

For all expert speed programs, 4 configurable output configurations are available (the color associated with the output number corresponds to that of the I/O bundle):

<table>
<thead>
<tr>
<th>Type 1</th>
<th>Out1</th>
<th>Out2</th>
<th>Out3</th>
<th>Out4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall pulse</td>
<td>Real torque</td>
<td>Direction of rotation</td>
<td>Error</td>
<td></td>
</tr>
<tr>
<td>Real speed</td>
<td>Real torque</td>
<td>Motor running</td>
<td>Error</td>
<td></td>
</tr>
<tr>
<td>Real speed</td>
<td>Direction of rotation</td>
<td>Digital</td>
<td>Error</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type 1</th>
<th>Out1</th>
<th>Out2</th>
<th>Out3</th>
<th>Out4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall pulse</td>
<td>Real torque</td>
<td>Direction of rotation</td>
<td>Error</td>
<td></td>
</tr>
<tr>
<td>Real speed</td>
<td>Real torque</td>
<td>Motor running</td>
<td>Error</td>
<td></td>
</tr>
<tr>
<td>Real speed</td>
<td>Direction of rotation</td>
<td>Digital</td>
<td>Error</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key:
- Digital type output
- PWM/Pulse/Frequency type output

12.1.4. Type of outputs in V200 programs

For V200 programs, configurable output configurations is as following (the color associated with the output number corresponds to that of the I/O bundle):

<table>
<thead>
<tr>
<th>V201 Program</th>
<th>OUT1</th>
<th>OUT2</th>
<th>OUT3</th>
<th>OUT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Mode</td>
<td>Type mode</td>
<td>Direction</td>
<td>Motor runs</td>
<td>Error</td>
</tr>
<tr>
<td>Position Mode</td>
<td>Type mode</td>
<td>Direction</td>
<td>Target reached</td>
<td>Error</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V202 Program</th>
<th>OUT1</th>
<th>OUT2</th>
<th>OUT3</th>
<th>OUT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target reached</td>
<td>Type mode</td>
<td>Direction</td>
<td>Motor runs</td>
<td>Error</td>
</tr>
</tbody>
</table>

key:
- Digital type output

12.1.5. Description of the Various V100 and V200 Tabs

For the description of tabs, expert program V101 is used as an example (for detailed information about each speed expert program, see the "Expert Program V101" to "Expert Program V104" sections in this document).
12.1.5.1. Home Page

This page is common to all the expert and application programs, whether in speed, position or torque mode. It can be used to choose between the various types of application and expert programs.

In our example, we have chosen the "Speed V100" category in the "Expert Programs" group, so the icons for the various V100 expert programs appear in the bottom right-hand corner of the window, and you then need to click on the one corresponding to the "V101" expert program:

Concise description of the V101 expert program

Figure 49

Expert program category selection: V100

Expert program selection: V101
12.1.5.2. "Description" Tab

This is an information tab containing a concise description of the various speed profiles that are created using this expert mode:

Summary description of the profiles that can be created using this expert mode: speed control, acceleration ramps, etc.

Figure 50
12.1.5.3. "Inputs" Tab

This tab is used to configure the various inputs in this expert mode (digital input polarity, value, control type, maximum and minimum control limit, etc.):

<table>
<thead>
<tr>
<th>Description</th>
<th>Inputs</th>
<th>Outputs</th>
<th>Tuning</th>
<th>Limits</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input 1 - Digital - D/N / D/P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input 2 - Digital - Direction of Rotation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input 3 - Digital - Holding at stop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input 4 - Digital - Fast Stop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input 5 - Proportional setpoint / Acceleration / Deceleration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input 6 - Proportional setpoint / Speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 51
12.1.5.4. "Outputs" Tab

This tab is used to select and configure the various outputs in this expert mode (speed type 1 to type 4):

<table>
<thead>
<tr>
<th>Description</th>
<th>Inputs</th>
<th>Outputs</th>
<th>Tuning</th>
<th>Limits</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output 1: PULSE</td>
<td>Real speed</td>
<td>Frequency at 1000 rpm: 1000 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output 2: PWM</td>
<td>Real torque</td>
<td>PWM frequency: 1000 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output 3: DIGITAL</td>
<td>Real direction</td>
<td>0: Motor running, 1: Motor stopped</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output 4: DIGITAL</td>
<td>Error</td>
<td>0: Error detected, 1: No error</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output 1 type parameter settings
Output 2 type parameter settings
Output 3 type parameter settings
Output 4 type parameter settings

This tab is used to view the selected parameters in graphic form.

12.1.5.5. "Tuning" Tab

This tab is used to represent some parameters (speed, torque, etc.) in graphic form and modify the speed control loop coefficients. It is common to all the speed expert programs.

This zone is used to:
- Select the parameters to be viewed in graphic form
- Set the speed correction factors
- Set the display time
- Export the data (.csv)
12.1.5.6. "Limits" Tab

This tab is used to configure the various motor operating limits: nominal and maximum torque (torque peak authorization) and the power supply overvoltage threshold.

- **Nominal torque (Cnominal)**: 250 mN.m
- **Maximum torque (Cmax)**: 500 mN.m
- **Maximum peak torque (Cmaxp)**: 3000 mN.m

Summary description of torque control.

Overvoltage detection

- **Threshold voltage**: 37 V

Overvoltage threshold settings: if this value is exceeded, an error will be generated.

12.1.5.7. "Errors" Tab

This tab provides information about the type of error encountered (based on the error code) and the action to be taken by the motor following this error. Action for the over torque error can be configured.

Setting the action to be taken when an overtorque error is encountered

- **Motor stopped, no holding torque applied**
- **Motor stopped, holding torque applied**: 150 mN.m
- **The motor tries to reach its input point**

If an error is detected that could jeopardize motor safety, the motor is automatically turned off and left freewheeling.

Procedure for restarting the motor following detection of an error:

- Eliminate the cause of the fault.
- Switch to stop mode and then back to run mode.
12.1.6. **Expert Program V101**

12.1.6.1. **Description**

Expert program V101 is used to:
- Create speed profiles with analog or PWM control.
- Set the acceleration/deceleration phases with analog or PWM control.
- Set the nominal and maximum torque parameters for the application safety via the HMI.

12.1.6.2. **"Inputs" Tab Parameters**

Digital input 1: Used to set the "On/Off" input polarity.

![Input 1 - DIGITAL - ON / OFF](image)

- On = 1 / Off = 0
- On = 0 / Off = 1

Figure 54

Digital input 2: Used to set the "Direction of rotation" input polarity.

![Input 2 - DIGITAL - Direction of Rotation](image)

- CW = 1 / CCW = 0
- CW = 0 / CCW = 1

Figure 55

Digital input 3: Used to set the "Holding at stop" input polarity and set the Holding Torque value.

![Input 3 - DIGITAL - Holding at stop](image)

- High state active
- Low state active

Holding Torque: 150 mN.m

Figure 56
Digital input 4: Used to set the "Fast stop" input polarity.

This input is used to stop the motor as quickly as possible, ignoring the setpoints applied to the other inputs.

![Diagram of Digital input 4 - Fast Stop](image)

Figure 57

Setpoint input 5: Used to select the control type for the acceleration/deceleration setpoint and fix the maximum and minimum limits for this setpoint. An inverted scale can be used.

![Diagram of Setpoint input 5 - Proportional setpoint: Acceleration/Deceleration](image)

Figure 58

Setpoint input 6: Used to select the control type for the speed setpoint and fix the maximum and minimum limits for this setpoint. An inverted scale can be used.

![Diagram of Setpoint input 6 - Proportional setpoint: Speed](image)

Figure 59
12.1.6.3. Type 1 "Outputs" Tab Parameters

Setting the parameters of Pulse output 1 "Real speed": A Hall pulse with configurable width (100 to 800 µs) is generated each time one of the 3 motor Hall sensors changes state.

80140_SMi21 and 80180_SMi21 motors have 12 Hall pulses per revolution (2 pairs of poles). The 80280_SMi21 motor has 24 Hall pulses per revolution (4 pairs of poles).

Output 1 - PULSE : Real speed

- Hall pulse width: 500 µs

Figure 60

Setting the parameters of PWM output 2 "Real Torque": The parameters can be set for the signal frequency of this output and the torque value corresponding to a cyclical ratio of 100% (scaling).

- If cyclical ratio = 0% → Torque supplied = 0 mNm.
- If cyclical ratio = 100% → Torque supplied = "S2 torque".

Output 2 - PWM : Real torque

- PWM frequency: 1000 Hz
- S2 torque (100% PWM): 1000 nN.m

Figure 61

State of digital output 3 "Real direction": Used to find out the motor direction of rotation.

Output 3 - DIGITAL : Real direction

- 0: Counter Clockwise
- 1: Clockwise

Figure 62

State of digital output 4 "Error": Used to find out whether an error has been detected.

Output 4 - DIGITAL : Error

- 0: Error detected
- 1: No error

Figure 63
12.1.6.4. Type 2 "Outputs" Tab Parameters

Setting the parameters of PWM output 1 "Real Speed": The parameters can be set for the signal frequency of this output (must be identical to the one for PWM output 2).

If cyclical ratio = 0% → Real speed = 0 rpm.
If cyclical ratio = 100% → Real speed = maximum speed setpoint defined in In6.

![Output 1 - PWM : Real speed](image)

Figure 64

Setting the parameters of PWM output 2 "Real Torque": The parameters can be set for the signal frequency of this output (must be identical to the one for PWM output 1) and the torque value corresponding to a cyclical ratio of 100% (scaling).

If cyclical ratio = 0% → Torque supplied = 0 mNm.
If cyclical ratio = 100% → Torque supplied = "S2 torque".

![Output 2 - PWM : Real torque](image)

Figure 65

State of digital output 3 "Motor running": Used to find out whether the motor is stopped or running.

![Output 3 - DIGITAL : Motor running](image)

Figure 66

State of digital output 4 "Error": Used to find out whether an error has been detected.

![Output 4 - DIGITAL : Error](image)

Figure 67
12.1.6.5. Type 3 "Outputs" Tab Parameters

Setting the parameters of frequency output 1 "Real speed": The parameters can be set for the signal frequency of this output for which the motor runs at 1000 RPM (200, 500 or 1000 Hz).

![Figure 68](image)

State of digital output 2 "Real direction": Used to find out the motor direction of rotation.

![Figure 69](image)

State of digital output 3 "Motor running": Used to find out whether the motor is stopped or running.

![Figure 70](image)

State of digital output 4 "Error": Used to find out whether an error has been detected.

![Figure 71](image)
12.1.6.6. Type 4 "Outputs" Tab Parameters

Setting the parameters of PWM output 1: "Real speed (centered on 50%)": The parameters can be set for the signal frequency of this output (must be identical to the one for PWM output 2).

- If cyclical ratio = 50% → Motor running forward (CW) at maximum speed setpoint defined in In6.
- If cyclical ratio = 100% → Motor running in reverse (CCW) at maximum speed setpoint defined in In6.

Figure 72

Setting the parameters of PWM output 2 "Real torque (centered on 50%)": The parameters can be set for the signal frequency of this output (must be identical to the one for PWM output 1) and the torque value corresponding to a cyclical ratio of 100% (scaling).

- If cyclical ratio = 0% → Braking torque supplied = "S2 torque".
- If cyclical ratio = 50% → Torque supplied = 0 mNm.
- If cyclical ratio = 100% → Motor torque supplied = "S2 torque".

Figure 73

Combinations of digital outputs 3 & 4 "Motor status": Used to find out the motor status.

Figure 74
12.1.6.7. "Tuning" Tab Parameters

Selection of the various parameters to be represented in graphic form: either 1, 2 or 3 parameters. The system speed response (measurement vs setpoint) can therefore be compared while displaying changes in the current.

- Speed Setpoint
- Real Speed
- Real Torque

Figure 75

Set the PID controller factors in the speed control loop (this function is reserved for advanced users). The values given in the example below ensure correct product operation in the majority of cases.

Figure 76

It is possible to set the recording time you wish to view, from 1 to 300 seconds. The sampling interval is 10 ms. During data acquisition, the other HMI functions are not available.

Figure 77

"Curve Drawing" button: used to start data acquisition. Curves are only displayed once acquisition is complete.

"Export Data" button: used to retrieve data corresponding to the selected parameters in a text file (.txt). To make this file compatible with the Excel spreadsheet, change its extension to .csv.

Figure 78
Example: With a speed setpoint on input 6 at 3200 RPM and an acceleration setpoint on input 5 at 800 RPM/s, this gives us the following graphic representation (recording time of 10 seconds):

![Motor Graphic](image)

Figure 79

Note: The display scales can be changed with the mouse wheel. Other functions are available by right-clicking the mouse.

![Display Options](image)

Figure 80
12.1.6.8. "Limitations" Tab Parameters

WARNING

UNEXPECTED MOVEMENT
An inappropriate setting for the torque values can result in unexpected movements of the application and destruction of the motor.
- Make sure this will not cause any damage.
- Do not continue with the test if there is anyone or any obstacle in the hazardous zone.

Failure to comply with these precautions will result in death, serious injury or equipment damage.

This tab can be used to set the limit values for various parameters.

![Diagram showing parameters](image)

Figure 81

Setting the various torque parameters: When the application torque exceeds the torque $C_{NOMINAL}$, the motor can provide torque up to the value C_{MAX} for the maximum duration t_{MAX}. Thereafter, if the application torque is still higher than $C_{NOMINAL}$, the motor torque is limited to the value $C_{NOMINAL}$ until the application torque falls back below this value.

WARNING

VOLTAGE SURGES
During the braking phases, the motor generates voltage surges.
- Check that its voltage surges can be tolerated by the other devices connected to the same power supply.
- Use an external circuit to limit voltage surges if the brake is being used intensively.

Failure to comply with these precautions will result in death, serious injury or equipment damage.

Setting the overvoltage detection threshold parameters: If the voltage at the motor terminals exceeds this threshold, an error is generated, the motor is stopped and no holding torque is applied (freewheeling).
12.1.6.9. "Errors" Tab Parameters

Setting the parameters for the action to be taken when an overtorque error is encountered: real torque higher than the nominal torque C_{NOMINAL} for a time longer than t_{MAX}.

![Figure 82](image)

The torque limitation is exceeded:
- Motor stopped, no holding torque applied
- Motor stopped, holding torque applied 150 mN.m
- The motor tries to reach its input setpoint

![Figure 83](image)

For all errors affecting motor safety, the action to be taken cannot be configured: in the event of an error, the motor is stopped and no holding torque is applied (freewheeling).

![Figure 84](image)

Motor safety errors:
- 81 - Overtemperature ($>110^\circ\text{C}$) \rightarrow Motor stopped, no holding torque applied
- 82 - Undervoltage ($<8\text{V}$) \rightarrow Motor stopped, no holding torque applied
- 83 - Overvoltage ($>57\text{V}$) \rightarrow Motor stopped, no holding torque applied

Procedure for restarting the motor following detection of an error:
- Eliminate the cause of the fault.
- Switch to stop mode: disable digital input 1 "On/Off".
- Switch back to run mode: enable digital input 1 "On/Off".
12.1.7. **Expert Program V102**

12.1.7.1. **Description**

Expert program V102 is used to:
- Create speed profiles with analog or PWM control.
- Set torque limiting with analog or PWM control.

12.1.7.2. **"Inputs" Tab Parameters**

Digital input 1: Used to set the "On/Off" input polarity.

![Input 1 - DIGITAL - ON / OFF](image)

- **On = 1 / Off = 0**
- **On = 0 / Off = 1**

Figure 85

Digital input 2: Used to set the "Direction of rotation" input polarity.

![Input 2 - DIGITAL - Direction of Rotation](image)

- **CW = 1 / CCW = 0**
- **CW = 0 / CCW = 1**

Figure 86

Digital input 3: Used to set the "Holding at stop" input polarity and set the Holding Torque value.

![Input 3 - DIGITAL - Holding at stop](image)

- **High State Active**
- **Low State Active**

Holding Torque: 150 mN.m

Figure 87
Digital input 4: Used to set the "Fast stop" input polarity. This input is used to stop the motor as quickly as possible, ignoring the setpoints applied to the other inputs.

![Figure 88](image)

Setpoint input 5: Used to select the control type for the torque limiting setpoint and fix the maximum and minimum limits for this setpoint. An inverted scale can be used.

![Figure 89](image)

Setpoint input 6: Used to select the control type for the speed setpoint and fix the maximum and minimum limits for this setpoint. An inverted scale can be used.

![Figure 90](image)
12.1.7.3. Type 1 "Outputs" Tab Parameters

Setting the parameters of Pulse output 1 "Real speed": A Hall pulse with configurable width (100 to 800 µs) is generated each time one of the 3 motor Hall sensors changes state.

80140_SMi21 and 80180_SMi21 motors have 12 Hall pulses per revolution (2 pairs of poles). The 80280_SMi21 motor has 24 Hall pulses per revolution (4 pairs of poles).

![Output 1 - PULSE: Real speed](image)

Figure 91

Setting the parameters of PWM output 2 "Real Torque": The parameters can be set for the signal frequency of this output and the torque value corresponding to a cyclical ratio of 100% (scaling).

If cyclical ratio = 0% → Torque supplied = 0 mNm.
If cyclical ratio = 100% → Torque supplied = “S2 torque”.

![Output 2 - PWM: Real Torque](image)

Figure 92

State of digital output 3 "Real direction": Used to find out the motor direction of rotation.

![Output 3 - DIGITAL: Real direction](image)

Figure 93

State of digital output 4 "Error": Used to find out whether an error has been detected.

![Output 4 - DIGITAL: Error](image)

Figure 94
12.1.7.4. Type 2 "Outputs" Tab Parameters

Setting the parameters of PWM output 1 "Real Speed": The parameters can be set for the signal frequency of this output (must be identical to the one for PWM output 2).

If cyclical ratio = 0% → Real speed = 0 rpm.
If cyclical ratio = 100% → Real speed = maximum speed setpoint defined in In6.

![Figure 95](image)

Setting the parameters of PWM output 2 "Real Torque": The parameters can be set for the signal frequency of this output (must be identical to the one for PWM output 1) and the torque value corresponding to a cyclical ratio of 100% (scaling).

If cyclical ratio = 0% → Torque supplied = 0 mNm.
If cyclical ratio = 100% → Torque supplied = "S2 torque".

![Figure 96](image)

State of digital output 3 "Motor Running": Used to find out whether the motor is stopped or running.

![Figure 97](image)

State of digital output 4 "Error": Used to find out whether an error has been detected.

![Figure 98](image)
12.1.7.5. **Type 3 "Outputs" Tab Parameters**

Setting the parameters of frequency output 1 "Real speed": The parameters can be set for the signal frequency of this output for which the motor runs at 1000 RPM (200, 500 or 1000 Hz).

![Output 1 - FREQUENCY: Real Speed](image)

Figure 99

State of digital output 2 "Real direction": Used to find out the motor direction of rotation.

![Output 2 - DIGITAL: Real direction](image)

Figure 100

State of digital output 3 "Motor Running": Used to find out whether the motor is stopped or running.

![Output 3 - DIGITAL: Motor Running](image)

Figure 101

State of digital output 4 "Error": Used to find out whether an error has been detected.

![Output 4 - DIGITAL: Error](image)

Figure 102
12.1.7.6. Type 4 "Outputs" Tab Parameters

Setting the parameters of PWM output 1: "Real speed (centered on 50%)": The parameters can be set for the signal frequency of this output (must be identical to the one for PWM output 2).

- If cyclical ratio = 0% → Motor running forward (CW) at maximum speed setpoint defined in In6.
- If cyclical ratio = 50% → Real speed = 0 rpm.
- If cyclical ratio = 100% → Motor running in reverse (CCW) at maximum speed setpoint defined in In6.

![Output 1 - PWM - Real Speed (centered on 50%)](image)

Figure 103

Setting the parameters of PWM output 2 "Real torque (centered on 50%)": The parameters can be set for the signal frequency of this output (must be identical to the one for PWM output 1) and the torque value corresponding to a cyclical ratio of 100% (scaling).

- If cyclical ratio = 0% → Braking torque supplied = "S2 torque".
- If cyclical ratio = 50% → Torque supplied = 0 mNm.
- If cyclical ratio = 100% → Motor torque supplied = "S2 torque".

![Output 2 - PWM - Real Torque (centered on 50%)](image)

Figure 104

Combinations of digital outputs 3 & 4 "Motor status": Used to find out the motor status.

![Outputs 3 & 4 - DIGITAL - Motor status](image)

Figure 105
12.1.7.7. "Tuning" Tab Parameters

Selection of the various parameters to be represented in graphic form: either 1, 2 or 3 parameters. The system speed response (measurement vs setpoint) can therefore be compared while displaying changes in the current.

- Speed Setpoint
- Real Speed
- Real Torque

Figure 106

Set the PID controller factors in the speed control loop (this function is reserved for advanced users). The values given in the example below ensure correct product operation in the majority of cases.

<table>
<thead>
<tr>
<th>Speed control loop parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_p = 5.70000$</td>
</tr>
<tr>
<td>$K_d = 0.00000$</td>
</tr>
</tbody>
</table>

Figure 107

It is possible to set the recording time you wish to view, from 1 to 300 seconds. The sampling interval is 10 ms. During data acquisition, the other HMI functions are not available.

Figure 108

"Curve Drawing" button: used to start data acquisition. Curves are only displayed once acquisition is complete.

"Export Data" button: used to retrieve data corresponding to the selected parameters in a text file (.txt). To make this file compatible with the Excel spreadsheet, change its extension to .csv.

Figure 109
Example: With a speed setpoint on input 6 at 2000 RPM and a torque limit on input 5 at 1000 mN.m, this gives us the following graphic representation (recording time of 5 seconds):

![Motor Graphic](image)

Figure 110

Note: The display scales can be changed with the mouse wheel. Other functions are available by right-clicking the mouse.

![Function Menu](image)

Figure 111
12.1.7.8. “Limits” Tab Parameters

WARNING

VOLTAGE SURGES
During the braking phases, the motor generates voltage surges.
• Check that its voltage surges can be tolerated by the other devices connected to the same power supply.
• Use an external circuit to limit voltage surges if the brake is being used intensively.
Failure to comply with these precautions will result in death, serious injury or equipment damage.

Setting the overvoltage detection threshold parameters: If the voltage at the motor terminals exceeds this threshold, an error is generated, the motor is stopped and no holding torque is applied (freewheeling).

![Overvoltage detection](image)

Figure 112

12.1.7.9. “Errors” Tab Parameters

For all errors affecting motor safety, the action to be taken cannot be configured: in the event of an error, the motor is stopped and no holding torque is applied (freewheeling).

![Motor safety errors](image)

Figure 113

Procedure for restarting the motor following detection of an error:
- Eliminate the cause of the fault.
- Switch to stop mode: disable digital input 1 “On/Off”.
- Switch back to run mode: enable digital input 1 “On/Off”.
12.1.8. Expert Program V103

12.1.8.1. Description

Expert program V103 is used to:
- Create speed profiles with analog or PWM control.
- Force speed control to one of the 3 preprogrammed speeds.
- Set the acceleration/deceleration phase parameters via the HMI.

12.1.8.2. "Inputs" Tab Parameters

Combinations of digital inputs 1 to 3: Used to choose the type of speed setpoint applied at the motor input:
- If no input is active, the setpoint will be that applied to input 6.
- If one of these 3 inputs is active, the setpoint will be the priority speed associated with this input.

N.B.: If more than 1 input In1 to In3 is active, the setpoint taken into account will be that for input 6.

![Figure 114](image)

Combinations of digital inputs 4 and 5: Used to choose the motion to be performed from the 4 actions indicated below.

![Figure 115](image)
Setpoint input 6: Used to select the control type for the speed setpoint and fix the maximum and minimum limits for this setpoint. An inverted scale can be used.

![Figure 116](image)

Setting the acceleration and braking ramps: These values are fixed via the HMI and cannot be changed by inputs while the motor is running. By default, the rates are fixed at 40,000 RPM/sec.

![Figure 117](image)
12.1.8.3. Type 1 "Outputs" Tab Parameters

Setting the parameters of Pulse output 1 "Real speed": A Hall pulse with configurable width (100 to 800 µs) is generated each time one of the 3 motor Hall sensors changes state.

80140_SMi21 and 80180_SMi21 motors have 12 Hall pulses per revolution (2 pairs of poles). The 80280_SMi21 motor has 24 Hall pulses per revolution (4 pairs of poles).

![Output 1: PULSE: Real speed](image)

Figure 118

Setting the parameters of PWM output 2 "Real torque": The parameters can be set for the signal frequency of this output and the torque value corresponding to a cyclical ratio of 100% (scaling).

If cyclical ratio = 0% → Torque supplied = 0 mNm.
If cyclical ratio = 100% → Torque supplied = "S2 torque".

![Output 2: PWM: Real torque](image)

Figure 119

State of digital output 3 "Real direction": Used to find out the motor direction of rotation.

![Output 3: DIGITAL: Real direction](image)

Figure 120

State of digital output 4 "Error": Used to find out whether an error has been detected.

![Output 4: DIGITAL: Error](image)

Figure 121
12.1.8.4. Type 2 "Outputs" Tab Parameters

Setting the parameters of PWM output 1 "Real speed": The parameters can be set for the signal frequency of this output (must be identical to the one for PWM output 2).

If cyclical ratio = 0% → Real speed = 0 rpm.
If cyclical ratio = 100% → Real speed = maximum speed setpoint defined in In6.

![Figure 122](image)

Setting the parameters of PWM output 2 "Real torque": The parameters can be set for the signal frequency of this output (must be identical to the one for PWM output 1) and the torque value corresponding to a cyclical ratio of 100% (scaling).

If cyclical ratio = 0% → Torque supplied = 0 mNm.
If cyclical ratio = 100% → Torque supplied = "S2 torque".

![Figure 123](image)

State of digital output 3 "Motor running": Used to find out whether the motor is stopped or running.

![Figure 124](image)

State of digital output 4 "Error": Used to find out whether an error has been detected.

![Figure 125](image)
12.1.8.5. Type 3 "Outputs" Tab Parameters

Setting the parameters of frequency output 1 "Real speed": The parameters can be set for the signal frequency of this output for which the motor runs at 1000 RPM (200, 500 or 1000 Hz).

![Figure 126](image)

Output 1 - FREQUENCY : Real speed

Frequency at 1000 rpm : 1000 Hz

State of digital output 2 "Real direction": Used to find out the motor direction of rotation.

![Figure 127](image)

Output 3 - DIGITAL : Real direction

0 : Counter Clockwise
1 : Clockwise

State of digital output 3 "Motor running": Used to find out whether the motor is stopped or running.

![Figure 128](image)

Output 3 - DIGITAL : Motor running

0 : Motor running
1 : Motor stopped

State of digital output 4 "Error": Used to find out whether an error has been detected.

![Figure 129](image)

Output 4 - DIGITAL : Error

0 : Error detected
1 : No error
12.1.8.6. Type 4 "Outputs" Tab Parameters

Setting the parameters of PWM output 1: "Real speed (centered on 50%)": The parameters can be set for the signal frequency of this output (must be identical to the one for PWM output 2).

- If cyclical ratio = 0% → Motor running forward (CW) at maximum speed setpoint defined in In6.
- If cyclical ratio = 50% → Real speed = 0 rpm.
- If cyclical ratio = 100% → Motor running in reverse (CCW) at maximum speed setpoint defined in In6.

![Output 1: PWM: Real Speed (centered on 50%)](image130)

Setting the parameters of PWM output 2 "Real torque (centered on 50%)": The parameters can be set for the signal frequency of this output (must be identical to the one for PWM output 1) and the torque value corresponding to a cyclical ratio of 100% (scaling).

- If cyclical ratio = 0% → Braking torque supplied = “S2 torque”.
- If cyclical ratio = 50% → Torque supplied = 0 mNm.
- If cyclical ratio = 100% → Motor torque supplied = "S2 torque".

![Output 2: PWM: Real Torque (centered on 50%)](image131)

Combinations of digital outputs 3 & 4 "Motor status": Used to find out the motor status.

![Outputs 3 & 4: DIGITAL: Motor status](image132)
12.1.8.7. "Tuning" Tab Parameters

Selection of the various parameters to be represented in graphic form: either 1, 2 or 3 parameters. The system speed response (measurement vs setpoint) can therefore be compared while displaying changes in the current.

- Speed setpoint
- Real speed
- Real torque

Figure 133

Set the PID controller factors in the speed control loop (this function is reserved for advanced users). The values given in the example below ensure correct product operation in the majority of cases.

Figure 134

It is possible to set the recording time you wish to view, from 1 to 300 seconds. The sampling interval is 10 ms. During data acquisition, the other HMI functions are not available.

Figure 135

"Curve Drawing" button: used to start data acquisition. Curves are only displayed once acquisition is complete.

"Export Data" button: used to retrieve data corresponding to the selected parameters in a text file (.txt). To make this file compatible with the Excel spreadsheet, change its extension to .csv.

Figure 136
Example: With a priority speed on input 1 at 1000 RPM, a priority speed on input 2 at 2000 RPM and a priority speed on input 3 at 3000 RPM, this gives us the following graphic representation (recording time of 10 seconds):

![Motor Graphic](image)

Figure 137

Note: The display scales can be changed with the mouse wheel. Other functions are available by right-clicking the mouse.

![Right-click menu](image)

Figure 138
12.1.8.8. "Limits" Tab Parameters

WARNING

UNEXPECTED MOVEMENT
An inappropriate setting for the torque values can result in unexpected movements of the application and destruction of the motor.
• Make sure this will not cause any damage.
• Do not continue with the test if there is anyone or any obstacle in the hazardous zone.
Failure to comply with these precautions will result in death, serious injury or equipment damage.

This tab can be used to set the limit values for various parameters.

![Figure 139](image)

Setting the various torque parameters: When the application torque exceeds the torque \(C_{\text{NOMINAL}} \), the motor can provide torque up to the value \(C_{\text{MAX}} \) for the maximum duration \(t_{\text{MAX}} \). Thereafter, if the application torque is still higher than \(C_{\text{NOMINAL}} \), the motor torque is limited to the value \(C_{\text{NOMINAL}} \) until the application torque falls back below this value.

WARNING

VOLTAGE SURGES
During the braking phases, the motor generates voltage surges.
• Check that its voltage surges can be tolerated by the other devices connected to the same power supply.
• Use an external circuit to limit voltage surges if the brake is being used intensively.
Failure to comply with these precautions will result in death, serious injury or equipment damage.

Setting the overvoltage detection threshold parameters: If the voltage at the motor terminals exceeds this threshold, an error is generated, the motor is stopped and no holding torque is applied (freewheeling).

![Overvoltage Detection](image)
12.1.8.9. "Errors" Tab Parameters

Setting the parameters for the action to be taken when an overtorque error is encountered: real torque higher than the nominal torque C_{NOMINAL}, for a time longer than t_{MAX}.

Figure 140

The torque limitation is exceeded
- Motor stopped, no holding torque applied
- Motor stopped, holding torque applied 150 mN.m
- The motor tries to reach its input setpoint

For all errors affecting motor safety, the action to be taken cannot be configured: in the event of an error, the motor is stopped and no holding torque is applied (freewheeling).

Figure 141

Motor safety errors:
- 81 - Overtemperature (>110°C) ➔ Motor stopped, no holding torque applied
- 82 - Undervoltage (<8V) ➔ Motor stopped, no holding torque applied
- 83 - Error Unipolar (<57V) ➔ Motor stopped, no holding torque applied

Procedure for restarting the motor following detection of an error:
- Eliminate the cause of the fault.
- Switch to stop mode: enable digital inputs 4 and 5.
- Switch back to run mode: disable either digital input 4 or digital input 5.
12.1.9. **Expert Program V104**

12.1.9.1. Description

Expert program V104 is used to:
- Create speed profiles with a choice of 8 preconfigured values.
- Set torque limiting with analog or PWM control.
- Set the acceleration/deceleration phase parameters via the HMI.

12.1.9.2. "Inputs" Tab Parameters

Combinations of digital inputs 1 to 3: Used to select the type of speed setpoint applied at the motor input: 8 possible combinations:

<table>
<thead>
<tr>
<th>Input 1</th>
<th>Input 2</th>
<th>Input 3</th>
<th>Speed (rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 rpm</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>500 rpm</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1000 rpm</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1500 rpm</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2000 rpm</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2500 rpm</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3000 rpm</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3500 rpm</td>
</tr>
</tbody>
</table>

Figure 142

Combinations of digital inputs 4 and 5: Used to select the motion to be performed from the 4 actions indicated below:

<table>
<thead>
<tr>
<th>Input 4</th>
<th>Input 5</th>
<th>Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Fast stop</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>CCW direction</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>CW direction</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Stop and remove error</td>
</tr>
</tbody>
</table>

Figure 143
Setpoint input 6: Used to select the control type for the torque limiting setpoint and fix the maximum and minimum limits for this setpoint. An inverted scale can be used.

Setting the acceleration and braking ramps: These values are fixed via the HMI and cannot be changed by inputs while the motor is running. By default, the rates are fixed at 40,000 RPM/sec.
12.1.9.3. Type 1 "Outputs" Tab Parameters

Setting the parameters of Pulse output 1 "Real speed": A Hall pulse with configurable width (100 to 800 µs) is generated each time one of the 3 motor Hall sensors changes state.

80140_SMi21 and 80180_SMi21 motors have 12 Hall pulses per revolution (2 pairs of poles). The 80280_SMi21 motor has 24 Hall pulses per revolution (4 pairs of poles).

![Output 1 - PULSE: Real speed](image)

Figure 146

Setting the parameters of PWM output 2 "Real torque": The parameters can be set for the signal frequency of this output and the torque value corresponding to a cyclical ratio of 100% (scaling).

If cyclical ratio = 0% → Torque supplied = 0 mNm.
If cyclical ratio = 100% → Torque supplied = "S2 torque".

![Output 2 - PWM: Real torque](image)

Figure 147

State of digital output 3 "Real direction": Used to find out the motor direction of rotation.

![Output 3 - DIGITAL: Real direction](image)

Figure 148

State of digital output 4 "Error": Used to find out whether an error has been detected.

![Output 4 - DIGITAL: Error](image)

Figure 149
12.1.9.4. Type 2 "Outputs" Tab Parameters

Setting the parameters of PWM output 1 "Real speed": The parameters can be set for the signal frequency of this output (must be identical to the one for PWM output 2).

- If cyclical ratio = 0% → Real speed = 0 rpm.
- If cyclical ratio = 100% → Real speed = 4000 rpm.

```
Output 1 - PWM : Real speed

PWM frequency : 1000 Hz
```

Figure 150

Setting the parameters of PWM output 2 "Real torque": The parameters can be set for the signal frequency of this output (must be identical to the one for PWM output 1) and the torque value corresponding to a cyclical ratio of 100% (scaling).

- If cyclical ratio = 0% → Torque supplied = 0 mNm.
- If cyclical ratio = 100% → Torque supplied = "S2 torque".

```
Output 2 - PWM : Real torque

PWM frequency : 1000 Hz
S2 torque (100% PWM) : 1000 mNm
```

Figure 151

State of digital output 3 "Motor running": Used to find out whether the motor is stopped or running.

```
Output 3 - DIGITAL : Motor running

0 : Motor running
1 : Motor stopped
```

Figure 152

State of digital output 4 "Error": Used to find out whether an error has been detected.

```
Output 4 - DIGITAL : Error

0 : Error detected
1 : No error
```

Figure 153
12.1.9.5. Type 3 "Outputs" Tab Parameters

Setting the parameters of frequency output 1 "Real speed": The parameters can be set for the signal frequency of this output for which the motor runs at 1000 RPM (200, 500 or 1000 Hz).

Output 1 - FREQUENCY : Real speed

Frequency at 1000 rpm: 1000 Hz

Figure 154

State of digital output 2 "Real direction": Used to find out the motor direction of rotation.

Output 2 - DIGITAL : Real direction

0: Counter Clockwise
1: Clockwise

Figure 155

State of digital output 3 "Motor running": Used to find out whether the motor is stopped or running.

Output 3 - DIGITAL : Motor running

0: Motor running
1: Motor stopped

Figure 156

State of digital output 4 "Error": Used to find out whether an error has been detected.

Output 4 - DIGITAL : Error

0: Error detected
1: No error

Figure 157
12.1.9.6. Type 4 "Outputs" Tab Parameters

Setting the parameters of PWM output 1: "Real speed (centered on 50%)": The parameters can be set for the signal frequency of this output (must be identical to the one for PWM output 2).

- If cyclical ratio = 0% → Motor running forward (CW) at speed of 4000 rpm.
- If cyclical ratio = 50% → Real speed = 0 rpm.
- If cyclical ratio = 100% → Motor running in reverse (CCW) at speed of 4000 rpm.

![Figure 158](image)

Setting the parameters of PWM output 2 "Real torque (centered on 50%)": The parameters can be set for the signal frequency of this output (must be identical to the one for PWM output 1) and the torque value corresponding to a cyclical ratio of 100% (scaling).

- If cyclical ratio = 0% → Braking torque supplied = “S2 torque”.
- If cyclical ratio = 50% → Torque supplied = 0 mNm.
- If cyclical ratio = 100% → Motor torque supplied = "S2 torque".

![Figure 159](image)

Combinations of digital outputs 3 & 4 "Motor status": Used to find out the motor status.

- 00: Error detected
- 01: Motor running
- 10: Motor stopped and holding torque applied
- 11: Motor stopped without holding

![Figure 160](image)
12.1.9.7. "Tuning" Tab Parameters

Selection of the various parameters to be represented in graphic form: either 1, 2 or 3 parameters. The system speed response (measurement vs setpoint) can therefore be compared while displaying changes in the current.

- Speed setpoint
- Real speed
- Real torque

Figure 161

Set the PID controller factors in the speed control loop (this function is reserved for advanced users). The values given in the example below ensure correct product operation in the majority of cases.

![PID controller factors](image)

Figure 162

It is possible to set the recording time you wish to view, from 1 to 300 seconds. The sampling interval is 10 ms. During data acquisition, the other HMI functions are not available.

Figure 163

"Curve Drawing" button: used to start data acquisition. Curves are only displayed once acquisition is complete.

"Export Data" button: used to retrieve data corresponding to the selected parameters in a text file (.txt). To make this file compatible with the Excel spreadsheet, change its extension to .csv.

Figure 164
Example: With 8 preprogrammed speeds, this gives us the following graphic representation: (recording time of 30 seconds). Speed 1 is at 0 RPM.

![Motor Graphic](image)

Figure 165

Note: The display scales can be changed with the mouse wheel. Other functions are available by right-clicking the mouse.

![Right-click menu](image)

Figure 166
12.1.9.8. "Limits" Tab Parameters

WARNING

VOLTAGE SURGES
During the braking phases, the motor generates voltage surges.
• Check that its voltage surges can be tolerated by the other devices connected to the same power supply.
• Use an external circuit to limit voltage surges if the brake is being used intensively.
Failure to comply with these precautions will result in death, serious injury or equipment damage.

Setting the overvoltage detection threshold parameters: If the voltage at the motor terminals exceeds this threshold, an error is generated, the motor is stopped and no holding torque is applied (freewheeling).

![Overvoltage detection]

Figure 167

12.1.9.9. "Errors" Tab Parameters

For all errors affecting motor safety, the action to be taken cannot be configured: in the event of an error, the motor is stopped and no holding torque is applied (freewheeling).

![Motor safety errors]

Figure 168

Procedure for restarting the motor following detection of an error:
- Eliminate the cause of the fault.
- Switch to stop mode: enable digital inputs 4 and 5.
- Switch back to run mode: disable either digital input 4 or digital input 5.
12.1.10. Expert program V201

12.1.10.1. Description

V201 expert program allows to:
- Set a speed using an analog input 0/10V or 0/5V or PWM. The speed regulation is based on the “moving target” principle which allows to reach very low speed (down to 1 rpm).
- Or to set a relative position using the same analog input (0/10V or 0/5V or PWM).
- Switch between speed mode and position mode.

12.1.10.2. “Inputs” Tab Parameters

Digital input 1: « On/Off »
This input is to start or stop the motor. The input polarity is adjustable.

```
Input 1 - DIGITAL - ON / OFF
@ On = 1 / Off = 0  @ On = 0 / Off = 1
```

Figure 169

Digital input 2: « Mode »
This input is to select the speed or position mode. The input polarity is adjustable.

```
Input 2 - DIGITAL - Mode
@ Speed Mode = 1 / Position Mode = 0  @ Speed Mode = 0 / Position Mode = 1
```

Figure 170

Digital input 3 (in speed mode): « Direction »
This input is to select motor direction. The input polarity is adjustable.

```
Input 3 - DIGITAL - Direction of Rotation
@ CW = 1 / CCW = 0  @ CW = 0 / CCW = 1
```

Figure 171

Digital input 3 (in position mode): « Go »
This input gives the start to go to a new position. This input is taken in count only after that the last positioning was completed. The “Pulse time min.” works as a filter. The « Go » signal could not be taken in count if its duration is lower than the set value.

Relative Position Mode:

```
Input 3 - DIGITAL
Pulse Time Min : 15 ms
```

Figure 172
Digital inputs 4 and 5 (in speed mode) : « speed coding »
They allow to select the speed range for the IN6 input.
For each range, the min and max speed, the acceleration and deceleration can be set.

<table>
<thead>
<tr>
<th>E4</th>
<th>E5</th>
<th>Min (rpm)</th>
<th>Max (rpm)</th>
<th>Acceleration (rpm/s)</th>
<th>Deceleration (rpm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1000</td>
<td>2000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2000</td>
<td>3000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3000</td>
<td>3500</td>
<td>4000</td>
<td>4000</td>
</tr>
</tbody>
</table>

Figure 173

Digital inputs 4 and 5 (in position mode) : “Position coding”
They allow to select the relative position to reach (the step value to do).
For each of the positions, the number of pulses (4096 pulses → 1 motor turn), the max speed, the acceleration and deceleration can be set.
The last position is adjustable by IN6 analog input (IN4 = IN5 = 0).

<table>
<thead>
<tr>
<th>E4</th>
<th>E5</th>
<th>Pules</th>
<th>Speed (rpm)</th>
<th>Acceleration (rpm/s)</th>
<th>Deceleration (rpm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1000</td>
<td>1000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2000</td>
<td>1000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3000</td>
<td>1000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 174

Analog input 6 (In speed mode) : « Speed »
This input adjusts motor speed using an analog 0/10V or 0/5V or PWM signal.
Speed range is given per IN4 + IN5 coding.
The setting parameter is:
- Analog signal type.

Figure 175
Analog input 6 (In position mode) : « Step »
This input adjusts the value of the step to do (relative position) when IN4=IN5=0, using an analog 0/10V or 0/5V or PWM signal.
The setting parameters are
- Minimum of pulses (4096 pulses \Rightarrow 1 motor turn)
- Maximum of pulses (4096 pulses \Rightarrow 1 motor turn)
- Analog signal type.

![Figure 176](image-url)

Figure 176
12.1.10.3. "Outputs" Tab Parameters

State of digital output 1: "Mode": Gives mode used.

Output 1 - DIGITAL : Mode
0 : Relative Positioning Mode
1 : Speed Mode

Figure 177

State of digital output 2: "Direction" Used to find out the motor direction of rotation.

Output 2 - DIGITAL : Direction Of Rotation
0 : Counter Clockwise
1 : Clockwise

Figure 178

State of digital output 3 (speed mode): "Motor running":
Used to find out whether the motor is stopped or running.

Output 3 - DIGITAL : Motor running
Speed Mode
0 : Motor running
1 : Motor stopped

Figure 179

State of digital output 3 (position mode): "Target":
Used to find out if the position is reached.

Output 3 - DIGITAL : Motor running
Relative Position Mode
0 : Position Not Reached
1 : Position Reached

Figure 180

State of digital output 4: "Error": Used to find out whether an error has been detected.

Output 4 - DIGITAL : Error
0 : No error
1 : Error detected

Figure 181
12.1.10.4. **Tuning** Tab Parameters

Selection of the various parameters to be represented in graphic form: either 1, 2, 3 or 4 parameters. The system position response (measurement vs setpoint) can therefore be compared while displaying changes in the current and the speed.

![Real Speed](checkbox)

![Real Torque](uncheckbox)

![Current Position](checkbox)

![Position setpoint](checkbox)

Figure 182

Set the PID controller factors in the position control loop (this function is reserved for advanced users). The values given in the example below ensure correct product operation in the majority of cases.

<table>
<thead>
<tr>
<th>Position control loop parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_p = 0.50000$</td>
</tr>
<tr>
<td>$K_i = 0.00600$</td>
</tr>
<tr>
<td>$K_d = 3.00000$</td>
</tr>
</tbody>
</table>

Figure 183

It is possible to set the recording time you wish to view, from 1 to 300 seconds. The sampling interval is 10 ms.

During data acquisition, the other HMI functions are not available.

![Recording time](input)

Figure 184

“Curve Drawing” button: used to start data acquisition. Curves are only displayed once acquisition is complete.

“Export Data” button: used to retrieve data corresponding to the selected parameters in a text file (.txt). To make this file compatible with the Excel spreadsheet, change its extension to .csv.

![Curve Drawing](button)

![Export Data](button)

Figure 185
Example: With a speed setting at 2,000 rpm on IN6 and 5 seconds measurement time, the following curves are obtained.

![Motor Graphic](image)

Figure 186

Note: The display scales can be changed with the mouse wheel. Other functions are available by right-clicking the mouse.

![Figure 187](image)

12.1.10.5. *Limits* Tab Parameters

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
</table>
| **VOLTAGE SURGES**
During the braking phases, the motor generates voltage surges.
- Check that its voltage surges can be tolerated by the other devices connected to the same power supply.
- Use an external circuit to limit voltage surges if the brake is being used intensively.
Failure to comply with these precautions will result in death, serious injury or equipment damage. |
Setting the overvoltage detection threshold parameter: If the voltage at the motor terminals exceeds this threshold, an error is generated, the motor is stopped and no holding torque is applied (freewheeling).

![Overvoltage detection](image)

Figure 188

12.1.10.6. “Errors” Tab Parameters

For all errors affecting motor safety, the action to be taken cannot be configured: in the event of an error, the motor stops, and no holding torque is applied (freewheeling).

<table>
<thead>
<tr>
<th>Motor safety errors</th>
<th>Action taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>81 - Overtemperature (>110°C)</td>
<td>Motor stopped, no holding torque applied</td>
</tr>
<tr>
<td>82 - Undervoltage (<9V)</td>
<td>Motor stopped, no holding torque applied</td>
</tr>
<tr>
<td>83 - Overvoltage (>57V)</td>
<td>Motor stopped, no holding torque applied</td>
</tr>
</tbody>
</table>

Figure 189
12.1.11. Expert program V202

12.1.11.1. Description

The expert program V202 allows to:
- To adjust a speed with an analog signal input 0/10V or 0/5V or PWM. The regulation is based on moving target principle and allows to reach very low speed values (down to 1rpm).
- To adjust a relative position using an analog input 0/10V or 0/5V or PWM.
- To switch from the speed mode (moving target) to the position mode (fix target) and reciprocally.

12.1.11.2. “Inputs” Tab Parameters

Digital input 1: « On/OFF »

This input is to start or stop the motor.

The input polarity is adjustable.

![Figure 190](image)

Digital input 2: « Direction »

This input reverses motor direction. This input doesn’t inhibit IN4 (sensor input).

The input polarity is adjustable.

![Figure 191](image)

Digital input 3: « Reverse »

This input reverses motor direction and inhibits IN4 (sensor input).

The input polarity is adjustable.
Digital input 4 : « Sensor »

This input is to switch from the moving target position mode (speed mode) to the fix target position mode and reciprocally.

The input polarity is adjustable.

The parameter « minimum pulse duration » allows to filter IN4 “sensor” input signal. The signal has to exceed this time before to be taken in count.

Option PLC:
- If “Via PLC” is selected: motor switches to speed mode when “sensor” input IN4 is deactivated.
- If “Via PLC” is not selected: Motor memorizes the “sensor” input IN4 activations. To return to speed mode, an OFF/ON action on IN1 is required.

Analog input 5 : « Speed»

This input adjusts motor speed using an analog signal 0/10V or 0/5V or PWM.

The setting parameters are
- Speed range
- Acceleration (value for IN5 and IN6)
- Deceleration
- Analog signal type.
Analog input 6: « Position »

This input adjusts the position set point using an analog signal 0/10V or 0/5V or PWM.

When IN4 is activated, the motor memorizes its position and fixes it as the zero position reference.

The setting parameters are:

- Position range (max: 0 to 2,000,000,000 pulses = 0 to 488,000 motor turns)
- Deceleration
- Analog signal type.
- Filter time (IN6 signal has to be constant during a time exceeding this value before to be taken in count)
- Memorization (not available when IN6 is a PWM signal)
 - Take in count the IN6 signal changes when IN5 signal is lower than the set value.
 - If value is 10V, IN6 changes are taken in count all the time
 - If value is 0.2V, IN6 changes are taken in count only when IN5 setting is below this value. It can be used when analog signals are perturbed due to very long cabling and ground issues.

![Input 6 - Proportional setpoint: Position](image)

Figure 195

12.1.11.3. "Outputs" Tab Parameters

State of digital output 1 "Target Position Reached": Used to find out whether the position set point has been reached.

![Output 1 - DIGITAL: Stop Position Reached](image)

Figure 196

State of digital output 2 "Real direction": Used to find out the motor direction of rotation.

![Output 2 - DIGITAL: Direction Of Rotation](image)

Figure 197

State of digital output 3 "Motor running": Used to find out whether the motor is stopped or running.
Figure 198

State of digital output 4 "Error": Used to find out whether an error has been detected.

Output 4 - DIGITAL : Error
- 0 : No error
- 1 : Error detected

Figure 199
12.1.11.4. “Tuning” Tab Parameters

Selection of the various parameters to be represented in graphic form: either 1, 2, 3 or 4 parameters. The system position response (measurement vs setpoint) can therefore be compared while displaying changes in the current and the speed.

- Real Speed
- Real Torque
- Current Position
- Position setpoint

Figure 200

Set the PID controller factors in the position control loop (this function is reserved for advanced users). The values given in the example below ensure correct product operation in the majority of cases.

![Position control loop parameters](image)

Figure 201

It is possible to set the recording time you wish to view, from 1 to 300 seconds. The sampling interval is 10 ms.

During data acquisition, the other HMI functions are not available.

Figure 202

“Curve Drawing” button: used to start data acquisition. Curves are only displayed once acquisition is complete.

“Export Data” button: used to retrieve data corresponding to the selected parameters in a text file (.txt). To make this file compatible with the Excel spreadsheet, change its extension to .csv.

Figure 203
Example: With a speed setting at 2,000 rpm on IN5 and 5 seconds measurement time, the following curves are obtained.

![Figure 204](image)

Note: The display scales can be changed with the mouse wheel. Other functions are available by right-clicking the mouse.

12.1.11.5. "Limits" Tab Parameters

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
</table>

VOLTAGE SURGES
During the braking phases, the motor generates voltage surges.
- Check that its voltage surges can be tolerated by the other devices connected to the same power supply.
- Use an external circuit to limit voltage surges if the brake is being used intensively.

Failure to comply with these precautions will result in death, serious injury or equipment damage.
Setting the overvoltage detection threshold parameter: If the voltage at the motor terminals exceeds this threshold, an error is generated, the motor is stopped and no holding torque is applied (freewheeling).

![Overvoltage detection](image)

Figure 206

12.1.11.6. “Errors” Tab Parameters

For all errors affecting motor safety, the action to be taken cannot be configured: in the event of an error, the motor stops, and no holding torque is applied (freewheeling).

![Motor safety errors](image)

Figure 207

Procedure for restarting the motor following detection of an error:

- Eliminate the cause of the fault.
- Switch to stop mode: disable digital input 1 “On/Off”.
- Switch back to run mode: enable digital input 1 “On/Off”.

C.MO.SAV.00006.FR_V5

January 12th, 2016
12.2. Position Programs

12.2.1. Types of Inputs in P100 Programs

The table below defines the function associated with each of the inputs in the 12 P100 programs (the color associated with the input number corresponds to that of the I/O bundle):

<table>
<thead>
<tr>
<th>Inputs</th>
<th>P101</th>
<th>P102</th>
<th>P103</th>
<th>P104</th>
<th>P105</th>
<th>P106</th>
</tr>
</thead>
<tbody>
<tr>
<td>In1</td>
<td>Position 1</td>
<td>Validation</td>
<td>Validation</td>
<td>Validation</td>
<td>Validation</td>
<td>Validation</td>
</tr>
<tr>
<td>In2</td>
<td>Position 2</td>
<td>1 to 8 positions</td>
<td>1 to 6 positions + Homing + ON/OFF</td>
<td>1 to 6 positions + Homing + ON/OFF</td>
<td>1 to 6 proportional positions + Homing + ON/OFF</td>
<td>1 to 6 proportional positions + Homing + ON/OFF</td>
</tr>
<tr>
<td>In3</td>
<td>Position 3</td>
<td>1 to 6 positions + Homing + ON/OFF</td>
<td>1 to 6 positions + Homing + ON/OFF</td>
<td>1 to 6 positions + Homing + ON/OFF</td>
<td>1 to 6 proportional positions + Homing + ON/OFF</td>
<td>1 to 6 proportional positions + Homing + ON/OFF</td>
</tr>
<tr>
<td>In4</td>
<td>Position 4</td>
<td>1 to 16 positions</td>
<td>Speed ramps</td>
<td>Switch 1: limit stop</td>
<td>Switch 1: limit stop</td>
<td>Switch 1: limit stop</td>
</tr>
<tr>
<td>In5</td>
<td>Homing</td>
<td>Homing</td>
<td>Speed ramps</td>
<td>Switch 1: limit stop</td>
<td>Switch 1: limit stop</td>
<td>Switch 1: limit stop</td>
</tr>
<tr>
<td>In6</td>
<td>ON/OFF</td>
<td>ON/OFF</td>
<td>Speed</td>
<td>Speed</td>
<td>Fast stop</td>
<td>Fast stop</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inputs</th>
<th>P107</th>
<th>P108</th>
<th>P109</th>
<th>P110</th>
<th>P111</th>
<th>P112</th>
</tr>
</thead>
<tbody>
<tr>
<td>In1</td>
<td>Validation</td>
<td>Validation</td>
<td>Validation</td>
<td>Validation</td>
<td>Validation</td>
<td>Validation</td>
</tr>
<tr>
<td>In2</td>
<td>1 to 16 positions</td>
<td>1 to 14 positions + Homing + ON/OFF</td>
<td>1 to 14 positions + Homing + ON/OFF</td>
<td>1 to 14 positions + Homing + ON/OFF</td>
<td>1 to 30 positions + Homing + ON/OFF</td>
<td>1 to 30 proportional positions + Homing + ON/OFF</td>
</tr>
<tr>
<td>In3</td>
<td>1 to 14 positions + Homing + ON/OFF</td>
</tr>
<tr>
<td>In4</td>
<td>Homing</td>
<td>Homing</td>
<td>Speed ramps</td>
<td>Switch 1: limit stop</td>
<td>Switch 1: limit stop</td>
<td>Switch 1: limit stop</td>
</tr>
<tr>
<td>In5</td>
<td>ON/OFF</td>
<td>Speed</td>
<td>Switch 1: limit stop</td>
<td>Fast stop</td>
<td>Switch 1: limit stop</td>
<td>Switch 1: limit stop</td>
</tr>
<tr>
<td>In6</td>
<td>switch 1: limit stop</td>
<td>Fast stop</td>
<td>Speed</td>
<td>Speed</td>
<td>Fast stop</td>
<td>Fast stop</td>
</tr>
</tbody>
</table>

Key:
- Digital type input
- Analog or PWM type input
- Forthcoming programs
Types of Inputs in P200 Programs

The table below defines the function associated with each of the inputs in the 5 P200 programs (the color associated with the input number corresponds to that of the I/O bundle):

Programs

<table>
<thead>
<tr>
<th>Inputs</th>
<th>P201</th>
<th>P202</th>
<th>P203</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>00 : Stop, erase error</td>
<td>00 : Stop, erase error</td>
<td>ON / OFF</td>
</tr>
<tr>
<td></td>
<td>10 : Homing</td>
<td>10 : Homing</td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>01 : Maintain actual position</td>
<td>01 : Memorize new position setting</td>
<td>Homing</td>
</tr>
<tr>
<td></td>
<td>11 : Live positioning</td>
<td>11 : Go to new memorized position</td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>Switch 1 : Limit stop</td>
<td>Switch 1 : Limit stop</td>
<td>Switch 1 : Limit stop</td>
</tr>
<tr>
<td>E4</td>
<td>Speed profile selection</td>
<td>Speed profile selection</td>
<td>Validation</td>
</tr>
<tr>
<td>E5</td>
<td>Position setting Coarse tuning</td>
<td>Position setting Coarse tuning</td>
<td>Analog max.speed setting</td>
</tr>
<tr>
<td>E6</td>
<td>Position setting Thin tuning</td>
<td>Position setting Thin tuning</td>
<td>Analog position setting (1024)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inputs</th>
<th>P204</th>
<th>P205</th>
<th>P206</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>ON / OFF</td>
<td>00 : Stop, erase error</td>
<td>00 : Stop, erase error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 : Homing</td>
<td>10 : Homing</td>
</tr>
<tr>
<td>E2</td>
<td>Homing</td>
<td>01 : Memorize new position setting</td>
<td>01 : Maintain actual position</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 : Go to new memorized position</td>
<td>11 : Live positioning</td>
</tr>
<tr>
<td>E3</td>
<td>Switch 1 : Limit stop</td>
<td>Switch 1 : Limit stop</td>
<td>Switch 1 : Limit stop</td>
</tr>
<tr>
<td>E4</td>
<td>Switch 2 : Limit stop</td>
<td>Switch 2 : Limit stop</td>
<td>Switch 2 : Limit stop</td>
</tr>
<tr>
<td>E5</td>
<td>Validation</td>
<td>Analog max.speed setting</td>
<td>Analog max.speed setting</td>
</tr>
<tr>
<td>E6</td>
<td>Analog position setting (1024)</td>
<td>Analog position setting (1024)</td>
<td>Analog position setting (1024)</td>
</tr>
</tbody>
</table>

Key:

- Digital type input
- Analog or PWM type input
- Forthcoming programs
Types of Outputs in P100 and P200 Programs

For all expert position programs, 5 configurable output configurations are available (the color associated with the output number corresponds to that of the I/O bundle):

<table>
<thead>
<tr>
<th>Out1</th>
<th>Out2</th>
<th>Out3</th>
<th>Out4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On stand-by, target reached (if 1)</td>
<td>Homing phase complete (if 0)</td>
<td>Motor running (if 1)</td>
<td>Error (if 1)</td>
</tr>
<tr>
<td>Digital</td>
<td>Digital</td>
<td>Digital</td>
<td>Digital</td>
</tr>
<tr>
<td>Type 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On stand-by, target reached (if 1)</td>
<td>Homing phase complete (if 1)</td>
<td>Motor running (if 0)</td>
<td>Error (if 0)</td>
</tr>
<tr>
<td>Digital</td>
<td>Digital</td>
<td>Digital</td>
<td>Digital</td>
</tr>
<tr>
<td>Type 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On stand-by, target reached (if 1)</td>
<td>Real torque (centered on 50%)</td>
<td>00: error detected</td>
<td></td>
</tr>
<tr>
<td>Digital</td>
<td>PWM</td>
<td>01: homing not performed OR not completed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10: motor stopped AND homing completed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11: motor running (positioning)</td>
<td></td>
</tr>
<tr>
<td>Type 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On stand-by, target reached (if 1)</td>
<td>Real torque (centered on 50%)</td>
<td>00: error detected OR motor in stop mode AND homing not performed</td>
<td></td>
</tr>
<tr>
<td>Digital</td>
<td>PWM</td>
<td>01: motor running (positioning)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10: motor stopped AND homing completed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11: not used</td>
<td></td>
</tr>
<tr>
<td>Type 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hall pulse</td>
<td>Direction of rotation</td>
<td>00: error detected OR motor in stop mode</td>
<td></td>
</tr>
<tr>
<td>Pulse</td>
<td>Digital</td>
<td>01: not used</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10: motor stopped AND target reached</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11: motor running (positioning)</td>
<td></td>
</tr>
</tbody>
</table>

Key:
- Digital type output
- PWM/Pulse/Frequency type output
12.2.4. Description of the Different Types of Homing

The homing sequence is an initialization phase that helps the motor estimate the application total stroke by searching for mechanical stops. These stops can be detected in one of 2 ways:

- With 1 limit switch by retrieving information from one of the inputs.
- By detecting overtorque when the motor is at a mechanical stop.

N.B.: The default motor direction of rotation is forward (CW).

12.2.4.1. Homing Phase Without a Switch

a) **Start from current position:**

When the homing sequence starts, the current position is used as a reference (position 0).

Figure 208

When the homing sequence starts, the current position is used as a reference (position 0).
b) 1 mechanical stop:

This homing phase is used to search for the system mechanical stop as follows:

- Depending on the "END1" stop position (on the right or left), the user selects the appropriate "Direction of rotation" and sets a "Homing Speed".

- When the application torque increases to more than the "Homing Torque", the "END1" mechanical stop is detected, the motor is in the "mechanical zero" position.

- To avoid the motor coming into contact with the "END1" mechanical stop each time it returns to the reference position, "Offset 1" can be set (in encoder pulses).

- This new position should be considered as the reference position. The motor positions itself at "software zero": the homing phase is complete.

- As a safety measure, if the homing phase is not complete after the "Max Homing Time", the motor detects a "Homing" type error and stops.
c) **2 mechanical stops:**

This homing phase is used to search for the 2 system mechanical stops as follows:

- Depending on the 1st "END1" stop position (on the right or left), the user selects the appropriate "**Direction of rotation**" and sets a "**Homing Speed**".

- When the application torque increases to more than the "**Homing Torque**", the "END1" mechanical stop is detected, the motor is in the "**mechanical zero**" position.

- To avoid the motor coming into contact with the "END1" mechanical stop each time it returns to the reference position, "**Offset 1**" can be set (in encoder pulses) which gives us the difference in position between the "**mechanical zero**" and the "**software zero**".

- The motor then travels in the opposite direction to find the 2nd mechanical stop "END2". The "END2" mechanical stop is detected in a similar way. The motor is in the "**mechanical end**" position.

- To avoid the motor coming into contact with the "END2" mechanical stop each time it returns to the reference position, "**Offset 2**" can be set (in encoder pulses) which gives us the difference in position between the "**mechanical end**" and the "**total stroke**".

- After detecting both mechanical stops, the motor positions itself at (END2 – offset 2): the homing phase is complete.

- As a safety measure, if the homing phase is not complete after the "**Max Homing Time**", the motor detects a "Homing" type error and stops.
12.2.4.2. Homing Phase With 1 Switch

a) 1 switch:

<table>
<thead>
<tr>
<th>Switch Status</th>
<th>Offset (pulses)</th>
<th>Homing Speed</th>
<th>Approach Speed</th>
<th>Homing Torque</th>
<th>Max Homing Time</th>
<th>Direction of rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>High state active</td>
<td>Offset 1</td>
<td>100 rpm</td>
<td>50 rpm</td>
<td>100 mN.m</td>
<td>300 second</td>
<td>Change the direction of rotation</td>
</tr>
<tr>
<td>Low state active</td>
<td>Offset 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 211

This homing phase is used to search for the system "switch" type stop as follows:

- First configure the switch polarity: « High state active » or "Low state active ".

- Depending on the switch position (on the right or left), the user selects the appropriate "Direction of rotation" and sets a "Homing Speed".

- When the switch changes state, the "Switch 1" stop is detected. The motor is in the "mechanical zero" position.

- To avoid the motor coming into contact with the switch each time it returns to the reference position, "Offset 1" can be set (in encoder pulses).

- This new position should be considered as the reference position. The motor positions itself at "software zero": the homing phase is complete.

- As a safety measure, if the homing phase is not complete after the "Max Homing Time", the motor detects a "Homing" type error and stops.
b) 1 switch then 1 end: with the zero defined by the switch

This homing phase is used to search initially for the system “switch” type stop, then for the system mechanical stop as follows:

- First configure the switch polarity: ‘High state active’ or ‘Low state active’.
- Depending on the switch position (on the right or left), the user selects the appropriate “Direction of rotation” and sets a “Homing Speed”.
- When the switch changes state, the first stop “Switch 1” is detected. The motor is in the “mechanical zero” position.
- To avoid the motor coming into contact with the “Switch 1” stop each time it returns to the reference position, “Offset 1” can be set (in encoder pulses) which gives us the difference in position between the “mechanical zero” and the “software zero”.
- The motor then travels in the opposite direction to find the 2nd mechanical stop “END2”.
- When the application torque increases to more than the “Homing Torque”, the “END2” mechanical stop is detected, the motor is in the “mechanical zero” position.
- To avoid the motor coming into contact with the “END2” mechanical stop each time it returns to the reference position, “Offset 2” can be set (in encoder pulses) which gives us the difference in position between the “mechanical end” and the “total stroke”.
- After detecting both stops, the motor positions itself at (END2 – offset 2): the homing phase is complete.
- As a safety measure, if the homing phase is not complete after the “Max Homing Time”, the motor detects a “Homing” type error and stops.
c) 1 end then 1 switch: with the zero defined by the mechanical switch

<table>
<thead>
<tr>
<th>Selection of homing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch Status</td>
</tr>
<tr>
<td>High state active</td>
</tr>
<tr>
<td>Offset (pulses)</td>
</tr>
<tr>
<td>Offset 1 0</td>
</tr>
<tr>
<td>Homing Speed</td>
</tr>
<tr>
<td>100 ppm</td>
</tr>
<tr>
<td>Approach Speed</td>
</tr>
<tr>
<td>50 ppm</td>
</tr>
<tr>
<td>Homing Torque</td>
</tr>
<tr>
<td>100 mNm</td>
</tr>
<tr>
<td>Max Homing Time</td>
</tr>
<tr>
<td>300 seconds</td>
</tr>
<tr>
<td>Direction of rotation</td>
</tr>
<tr>
<td>Change the direction of rotation</td>
</tr>
</tbody>
</table>

This homing phase is used to search initially for the system mechanical stop, then for the system "switch" type stop as follows:

- First configure the switch polarity: « High state active » or "Low state active ".
- Depending on the "END1" stop position (on the right or left), the user selects the appropriate "Direction of rotation" and sets a "Homing Speed".
- When the application torque increases to more than the "Homing Torque", the "END1" mechanical stop is detected, the motor is in the "mechanical zero" position.
- To avoid the motor coming into contact with the "END1" mechanical stop each time it returns to the reference position, "Offset 1" can be set (in encoder pulses) which gives us the difference in position between the "mechanical zero" and the "software zero".
- The motor then travels in the opposite direction to find the 2nd stop "Switch 2".
- When the switch changes state, the 2nd stop "Switch 2" is detected, the motor is in the "mechanical end" position.
- To avoid the motor coming into contact with the "Switch 2" stop each time it returns to the reference position, "Offset 2" can be set (in encoder pulses) which gives us the difference in position between the "mechanical end" and the "total stroke".
- After detecting both stops, the motor positions itself at (Switch 2 – offset 2): the homing phase is complete.
- As a safety measure, if the homing phase is not complete after the "Max Homing Time", the motor detects a "Homing" type error and stops.
12.2.5. **Description of the P100 Various Tabs**

For the description of tabs, expert program P101 is used as an example (for detailed information about each position expert program, see the "Expert Program P101" to "Expert Program P111" sections in this document).

12.2.5.1. **Home Page**

This page is common to all the expert and application programs, whether in speed, position or torque mode. It can be used to choose between the various types of application and expert programs.

In our example, we have chosen the "Position P100" category in the "Expert Programs" group, so the icons for the various P100 expert programs appear in the bottom right-hand corner of the window, and you then need to click on the one corresponding to the "P101" expert program:

![Concise description of the P101 expert program](image)

Figure 214

![Expert program category selection: P100](image)

![Expert program selection: P101](image)
12.2.5.2. "Description" Tab

This is an information tab containing a concise description of the various position profiles that are created using this expert mode:

Summary description of the profiles that can be created using this expert mode: positioning with 4 predefined targets, acceleration ramps, etc.

Figure 215
12.2.5.3. "Homing" Tab

This tab is used to select and configure the type of homing to be performed: offset(s), speed, homing torque, maximum duration of the homing phase, motor direction of rotation to search for the 1st stop.

12.2.5.4. "Inputs" Tab

This tab is used to configure the various inputs in this expert mode (digital input polarity, setting the parameters for the 4 target positions: position, maximum speed, acceleration and deceleration rates).
12.2.5.5. "Outputs" Tab

This tab is used to select and configure the various outputs in this expert mode (position type 5 to type 9):

<table>
<thead>
<tr>
<th>Description</th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
<th>Type 4</th>
<th>Type 5</th>
<th>Type 6</th>
<th>Type 7</th>
<th>Type 8</th>
<th>Type 9</th>
<th>Type 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output 1 - PULSE: Real speed</td>
<td>500</td>
<td>mms</td>
<td>1000</td>
<td>Hz</td>
<td>1000</td>
<td>Hz</td>
<td>1000</td>
<td>mms</td>
<td>1000</td>
<td>Hz</td>
</tr>
<tr>
<td>Output 2 - PWM: Real Torque</td>
<td>500</td>
<td>mms</td>
<td>1000</td>
<td>Hz</td>
<td>1000</td>
<td>mms</td>
<td>1000</td>
<td>Hz</td>
<td>1000</td>
<td>mms</td>
</tr>
<tr>
<td>Output 3 - DIGITAL: Motor Running</td>
<td>0: Motor running</td>
<td>1: Motor stopped</td>
</tr>
<tr>
<td>Output 4 - DIGITAL: Error</td>
<td>0: Error detected</td>
<td>1: No error</td>
</tr>
</tbody>
</table>

Output 5 type parameter settings
Output 6 type parameter settings
Output 7 type parameter settings
Output 8 type parameter settings
Output 9 type parameter settings

Figure 218
12.2.5.6. "Tuning" Tab

This tab is used to represent some parameters (speed, position, torque, etc.) in graphic form and modify the position control loop coefficients. It is common to all the position expert programs.

![Graph of the Tuning Tab](image)

This tab is used to view the selected parameters in graphic form.

This zone is used to:
- Select the parameters to be viewed in graphic form
- Set the position correction factors
- Set the display time
- Export the data (.csv)

12.2.5.7. "Limits" Tab

This tab is used to configure the various motor operating limits: nominal and maximum torque (torque peak authorization) and the power supply overvoltage threshold.

![Graph of the Limits Tab](image)

Summary description of torque control.

Setting the parameters associated with torque control.

Overvoltage threshold settings: if this value is exceeded, an error will be generated.
12.2.5.8. "Errors" Tab

This tab provides information about the type of error encountered (based on the error code) and the action to be taken by the motor following this error.

Action for the over-torque error can be configured.

<table>
<thead>
<tr>
<th>Description</th>
<th>Setting</th>
<th>Outputs</th>
<th>Tuning</th>
<th>Limits</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 - Over Torque Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The torque limitation is exceeded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Motor stopped, no holding torque applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Motor stopped, holding torque applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ The motor tries to reach its input setpoint</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If an error is detected that could jeopardize motor safety, the motor is automatically turned off and left freewheeling.

Procedure for restarting the motor following detection of an error:
- Eliminate the cause of the fault.
- Switch to stop mode and then back to run mode.

Figure 221
12.2.6. **Expert Program P101**

12.2.6.1. **Description**

Expert program P101 is used to:
- Perform a homing phase to initialize the system with detection of the stroke ends.
- Perform various positionings using 4 preset setpoint positions, each corresponding to one of the digital inputs "In1" to "In4".
- Set the acceleration/deceleration phases and the maximum speed that must not be exceeded between each point via the HMI.

12.2.6.2. "Homing" Tab Parameters

Set the difference in position (in pulses) between the mechanical stops and the application total stroke limits: stop 1 (END1) represents the stroke start, stop 2 (END2) represents the stroke end.

Note: Where there is only one mechanical stop, the "Offset 2" parameter is not available.

![Offset Parameters](image)

Figure 222

Set the search speed for stops during the homing phase.

![Homing Speed](image)

Figure 223

Set the homing torque that allows the mechanical stop to be found by detection of overtorque.

![Homing Torque](image)

Figure 224

Set the maximum permitted time for the homing phase. If this value is exceeded, an error will be generated. Time limited to 300 seconds.

![Max Homing Time](image)

Figure 225
Set the direction of rotation for the first stop search (END1).

N.B.: By default, the motor runs forward (CW).

![Figure 226](image)

Figure 226
12.2.6.3. "Inputs" Tab Parameters

Digital input 1: Used to set the "Position 1" input polarity.

![Image](Figure 227)

Digital input 2: Used to set the "Position 2" input polarity.

![Image](Figure 228)

Digital input 3: Used to set the "Position 3" input polarity.

![Image](Figure 229)

Digital input 4: Used to set the "Position 4" input polarity.

![Image](Figure 230)
Set the 4 position setpoints and the speed profiles to be followed (acceleration ramp, speed step and deceleration ramp: trapezoidal profile):

<table>
<thead>
<tr>
<th>Inputs 1, 2, 3, 4 - DIGITAL : Set Potection Setpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position (pulses)</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>E1</td>
</tr>
<tr>
<td>E2</td>
</tr>
<tr>
<td>E3</td>
</tr>
<tr>
<td>E4</td>
</tr>
</tbody>
</table>

Figure 231

Digital input 5: Used to set the "Start Homing" input polarity.

Input 5 - DIGITAL : Start Homing

- Start Homing=1 / Stop Homing=0
- Start Homing=0 / Stop Homing=1

Figure 232

Digital input 6: Used to set the "On/Off" input polarity.

Input 6 - DIGITAL : ON / OFF

- ON=1 / OFF=0
- ON=0 / OFF=1

Figure 233
12.2.6.4. Type 5 "Outputs" Tab Parameters

State of digital output 1 "Target Reached Flag": Used to find out whether the position setpoint has been reached.

<table>
<thead>
<tr>
<th>Output 1 - DIGITAL: Target Reached Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Position target not reached</td>
</tr>
<tr>
<td>1: Position target reached</td>
</tr>
</tbody>
</table>

Figure 234

State of digital output 2 "Homing Sequence Information": Used to find out how the homing phase is progressing: completed, in progress or not performed.

<table>
<thead>
<tr>
<th>Output 2 - DIGITAL: Homing Sequence Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Homing completed</td>
</tr>
<tr>
<td>1: Homing in progress or no homing</td>
</tr>
</tbody>
</table>

Figure 235

State of digital output 3 "Motor running": Used to find out whether the motor is stopped or running.

<table>
<thead>
<tr>
<th>Output 3 - DIGITAL: Motor running</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Motor stopped</td>
</tr>
<tr>
<td>1: Motor running</td>
</tr>
</tbody>
</table>

Figure 236

State of digital output 4 "Error": Used to find out whether an error has been detected.

<table>
<thead>
<tr>
<th>Output 4 - DIGITAL: Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: No error</td>
</tr>
<tr>
<td>1: Error detected</td>
</tr>
</tbody>
</table>

Figure 237
12.2.6.5. Type 6 "Outputs" Tab Parameters

State of digital output 1 "Target Reached Flag": Used to find out whether the position setpoint has been reached.

<table>
<thead>
<tr>
<th>Output 1</th>
<th>DIGITAL: Target Reached Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Position target not reached</td>
</tr>
<tr>
<td>1</td>
<td>Position target reached</td>
</tr>
</tbody>
</table>

Figure 238

State of digital output 2 "Homing Sequence Information": Used to find out how the homing phase is progressing: completed, in progress or not performed.

<table>
<thead>
<tr>
<th>Output 2</th>
<th>DIGITAL: Homing Sequence Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Homing in progress or no homing</td>
</tr>
<tr>
<td>1</td>
<td>Homing completed</td>
</tr>
</tbody>
</table>

Figure 239

State of digital output 3 "Motor running": Used to find out whether the motor is stopped or running.

<table>
<thead>
<tr>
<th>Output 3</th>
<th>DIGITAL: Motor running</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Motor running</td>
</tr>
<tr>
<td>1</td>
<td>Motor stopped</td>
</tr>
</tbody>
</table>

Figure 240

State of digital output 4 "Error": Used to find out whether an error has been detected.

<table>
<thead>
<tr>
<th>Output 4</th>
<th>DIGITAL: Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Error detected</td>
</tr>
<tr>
<td>1</td>
<td>No error</td>
</tr>
</tbody>
</table>
12.2.6.6. Type 7 "Outputs" Tab Parameters

State of digital output 1 "Target Reached Flag": Used to find out whether the position setpoint has been reached.

<table>
<thead>
<tr>
<th>Output 1: DIGITAL: Target Reached Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Position target not reached</td>
</tr>
<tr>
<td>1: Position target reached</td>
</tr>
</tbody>
</table>

Figure 242

Setting the parameters of PWM output 2 "Real torque (centered on 50%)": The parameters can be set for the signal frequency of this output and the torque value corresponding to a cyclical ratio of 100% (scaling).

If cyclical ratio = 0% → Braking torque supplied = "S2 torque".
If cyclical ratio = 50% → Torque supplied = 0 mNm.
If cyclical ratio = 100% → Motor torque supplied = "S2 torque".

<table>
<thead>
<tr>
<th>Output 2: PWM: Real torque (centered on 50%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM frequency:</td>
</tr>
<tr>
<td>S2 torque (100% PWM):</td>
</tr>
<tr>
<td>1000 Hz</td>
</tr>
<tr>
<td>1000 mNm</td>
</tr>
</tbody>
</table>

Figure 243

Combinations of digital outputs 3 & 4 "Motor status": Used to find out the motor status.

<table>
<thead>
<tr>
<th>Outputs 3 & 4: DIGITAL: Motor status</th>
</tr>
</thead>
<tbody>
<tr>
<td>00: Error detected</td>
</tr>
<tr>
<td>01: Homing in progress CF nc homing</td>
</tr>
<tr>
<td>10: Homing completed AND motor stopped</td>
</tr>
<tr>
<td>11: Motor running (positioning)</td>
</tr>
</tbody>
</table>

Figure 244
12.2.6.7. Type 8 "Outputs" Tab Parameters

State of digital output 1 "Target Reached Flag": Used to find out whether the position setpoint has been reached.

<table>
<thead>
<tr>
<th>Output 1 - DIGITAL : Target Reached Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 : Position target not reached</td>
</tr>
<tr>
<td>1 : Position target reached</td>
</tr>
</tbody>
</table>

Figure 245

Setting the parameters of PWM output 2 "Real torque (centered on 50%)": The parameters can be set for the signal frequency of this output and the torque value corresponding to a cyclical ratio of 100% (scaling).

- If cyclical ratio = 0% → Braking torque supplied = "S2 torque".
- If cyclical ratio = 50% → Torque supplied = 0 mNm.
- If cyclical ratio = 100% → Motor torque supplied = "S2 torque".

<table>
<thead>
<tr>
<th>Output 2 - PWM : Real torque (centered on 50%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM frequency : 1000 Hz</td>
</tr>
<tr>
<td>S2 torque (100% PWM) : 1000 mN m</td>
</tr>
</tbody>
</table>

Figure 246

Combinations of digital outputs 3 & 4 "Motor status": Used to find out the motor status.

<table>
<thead>
<tr>
<th>Outputs 3 & 4 - DIGITAL : Motor status</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 : Error detected OR motor in stop mode AND no homing</td>
</tr>
<tr>
<td>01 : Motor running (positioning)</td>
</tr>
<tr>
<td>10 : Motor stopped AND homing completed</td>
</tr>
<tr>
<td>11 : Not used</td>
</tr>
</tbody>
</table>

Figure 247
12.2.6.8. Type 9 "Outputs" Tab Parameters

Setting the parameters of Pulse output 1 "Real speed": A Hall pulse with configurable width (100 to 800 µs) is generated each time one of the 3 motor Hall sensors changes state.

80140_SMi21 and 80180_SMi21 motors have 12 Hall pulses per revolution (2 pairs of poles). The 80280_SMi21 motor has 24 Hall pulses per revolution (4 pairs of poles).

![Output 1 - Pulse: Real speed](image)

- Hall pulse width: 500 µs

Figure 248

State of digital output 2 "Real direction": Used to find out the motor direction of rotation.

![Output 2 - Digital: Real direction](image)

- 0: Counter Clockwise
- 1: Clockwise

Figure 249

Combinations of digital outputs 3 & 4 "Motor status": Used to find out the motor status.

![Outputs 3 & 4 - Digital: Motor status](image)

- 00: Error detected OR motor in stop mode
- 01: Not used
- 10: Motor stopped ET target reached
- 11: Motor running (positioning)

Figure 250
12.2.6.9. "Tuning" Tab Parameters

Selection of the various parameters to be represented in graphic form: either 1, 2, 3 or 4 parameters. The system position response (measurement vs setpoint) can therefore be compared while displaying changes in the current and the speed.

- Real Speed
- Real Torque
- Current Position
- Position setpoint

Figure 251

Set the PID controller factors in the position control loop (this function is reserved for advanced users). The values given in the example below ensure correct product operation in the majority of cases.

![Position control loop parameters](image)

Figure 252

It is possible to set the recording time you wish to view, from 1 to 300 seconds.

The sampling interval is 10 ms.

During data acquisition, the other HMI functions are not available.

![Recording time: 100 seconds](image)

Figure 253

"Curve Drawing" button: used to start data acquisition. Curves are only displayed once acquisition is complete.

"Export Data" button: used to retrieve data corresponding to the selected parameters in a text file (.txt). To make this file compatible with the Excel spreadsheet, change its extension to .csv.

![Buttons](image)

Figure 254
Example:

- Position 1: 2,000,000 points, acceleration ramp 400 rpm/sec, speed step 1000 rpm, deceleration ramp 100 rpm/sec.
- Position 2: 0 points, acceleration ramp 400 rpm/sec, speed step 1000 rpm, deceleration ramp 100 rpm/sec. This gives us the following graphic representation:

![Motor Graphic](image)

Figure 255

Note: The display scales can be changed with the mouse wheel. Other functions are available by right-clicking the mouse.

![Function Menu](image)

Figure 256
12.2.6.10. "Limits" Tab Parameters

WARNING

UNEXPECTED MOVEMENT
An inappropriate setting for the torque values can result in unexpected movements of the application and destruction of the motor.
- Make sure this will not cause any damage.
- Do not continue with the test if there is anyone or any obstacle in the hazardous zone.
Failure to comply with these precautions will result in death, serious injury or equipment damage.

This tab can be used to set the limit values for various parameters.

<table>
<thead>
<tr>
<th>Torque management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal torque (Nominal)</td>
</tr>
<tr>
<td>Maximum torque (Max)</td>
</tr>
<tr>
<td>Maximum peak time (Max)</td>
</tr>
</tbody>
</table>

Figure 257

Setting the various torque parameters: When the application torque exceeds the torque \(C_{\text{NOMINAL}} \), the motor can provide torque up to the value \(C_{\text{MAX}} \) for the maximum duration \(t_{\text{MAX}} \). Thereafter, if the application torque is still higher than \(C_{\text{NOMINAL}} \), the motor torque is limited to the value \(C_{\text{NOMINAL}} \) until the application torque falls back below this value.

WARNING

VOLTAGE SURGES
During the braking phases, the motor generates voltage surges.
- Check that its voltage surges can be tolerated by the other devices connected to the same power supply.
- Use an external circuit to limit voltage surges if the brake is being used intensively.
Failure to comply with these precautions will result in death, serious injury or equipment damage.

Setting the overvoltage detection threshold parameter: If the voltage at the motor terminals exceeds this threshold, an error is generated, the motor is stopped and no holding torque is applied (freewheeling).

<table>
<thead>
<tr>
<th>Overvoltage detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold voltage</td>
</tr>
</tbody>
</table>
12.2.6.11. "Errors" Tab Parameters

Setting the parameters for the action to be taken when an overtorque error is encountered: real torque higher than the nominal torque C_{NOMINAL} for a time longer than t_{MAX}.

- **Figure 258**

For all errors affecting motor safety, the action to be taken cannot be configured: in the event of an error, the motor stops, and no holding torque is applied (freewheeling).

- **Figure 259**

Procedure for restarting the motor following detection of an error:
- Eliminate the cause of the fault.
- Switch to stop mode: disable digital input 6 "On/Off".
- Switch back to run mode: enable digital input 6 "On/Off".
12.2.7. **Expert Program P111**

12.2.7.1. **Description**

Expert program P111 is used to:

- Perform a homing phase to initialize the system with detection of the limit switches (switch or mechanical type). A single switch type contact is managed in this program.
- Perform various positionings using 1 to 30 preset setpoint positions, each corresponding to a specific combination of digital inputs "In1" to "In5".
- Set the acceleration/deceleration phases and the maximum speed that must not be exceeded between each point via the HMI.

12.2.7.2. **"Homing" Tab Parameters**

Set the polarity of the switch wired on digital input "In6":

![Switch Status](image)

Figure 260

Set the difference in position (in pulses) between the mechanical stops and the application total stroke limits: stop 1 (END1) represents the stroke start, stop 2 (END2) represents the stroke end.

Note: Where there is only one mechanical stop, the "Offset 2" parameter is not available.

![OFFSET (pulses)](image)

Figure 261

Set the search speed for stops during the homing phase.

![Homing Speed](image)

Figure 262

Set the homing torque that allows the mechanical stop to be found by detection of over-torque.

![Homing Torque](image)

Figure 263
Set the maximum permitted time for the homing phase. If this value is exceeded, an error will be generated. Time limited to 300 s.

<table>
<thead>
<tr>
<th>Max Homing Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 s</td>
</tr>
</tbody>
</table>

Figure 264

Set the direction of rotation for the first stop search.

N.B.: By default, the motor runs forward (CW).

- [] Change the direction of rotation

Figure 265
12.2.7.3. "Inputs" Tab Parameters

Information concerning the polarity of the switch wired on digital input 6. This polarity is selected in the "Homing" tab (see above).

![Input 6 - DIGITAL - Switch](Figure 266)

Select the number of position setpoints to be preset (see table below).

![Number of position setpoints](Figure 267)

<table>
<thead>
<tr>
<th>Position Index</th>
<th>IN1</th>
<th>IN2</th>
<th>IN3</th>
<th>IN4</th>
<th>IN5</th>
<th>Position [pulses]</th>
<th>Speed [rpm]</th>
<th>Acceleration [rpm/s²]</th>
<th>Deceleration [rpm/s²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Start Homi...</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1000</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>Position 1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>1000</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>Position 2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2000</td>
<td>1000</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>Position 3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3000</td>
<td>1000</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>Position 4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4000</td>
<td>1000</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>Position 5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5000</td>
<td>1000</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>Position 6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6000</td>
<td>1000</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>Position 7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7000</td>
<td>1000</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>Position 8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8000</td>
<td>1000</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>Position 9</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9000</td>
<td>1000</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>Position 10</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10000</td>
<td>1000</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>Position 11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>11000</td>
<td>1000</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>Position 12</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>12000</td>
<td>1000</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>Position 13</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>13000</td>
<td>1000</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>Position 14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>14000</td>
<td>1000</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>Position 15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>15000</td>
<td>1000</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>Position 16</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>16000</td>
<td>1000</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>Position 17</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>17000</td>
<td>1000</td>
<td>40000</td>
<td>40000</td>
</tr>
</tbody>
</table>

![Figure 268]
12.2.7.4. Type 5 "Outputs" Tab Parameters

State of digital output 1 "Target Reached Flag": Used to find out whether the position setpoint has been reached.

```
Output 1 - DIGITAL: Target Reached Flag
0 : Position target not reached
1 : Position target reached
```

Figure 269

State of digital output 2 "Homing Sequence Information": Used to find out how the homing phase is progressing: completed, in progress or not performed.

```
Output 2 - DIGITAL: Homing Sequence Information
0 : Homing completed
1 : Homing in progress or no homing
```

Figure 270

State of digital output 3 "Motor running": Used to find out whether the motor is stopped or running.

```
Output 3 - DIGITAL: Motor running
0 : Motor stopped
1 : Motor running
```

Figure 271

State of digital output 4 "Error": Used to find out whether an error has been detected.

```
Output 4 - DIGITAL: Error
0 : No error
1 : Error detected
```

Figure 272
12.2.7.5. Type 6 "Outputs" Tab Parameters

State of digital output 1 "Target Reached Flag": Used to find out whether the position setpoint has been reached.

<table>
<thead>
<tr>
<th>Output 1 - DIGITAL : Target Reached Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 : Position target not reached</td>
</tr>
<tr>
<td>1 : Position target reached</td>
</tr>
</tbody>
</table>

Figure 273

State of digital output 2 "Homing Sequence Information": Used to find out how the homing phase is progressing: completed, in progress or not performed.

<table>
<thead>
<tr>
<th>Output 2 - DIGITAL : Homing Sequence Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 : Homing in progress or no homing</td>
</tr>
<tr>
<td>1 : Homing completed</td>
</tr>
</tbody>
</table>

Figure 274

State of digital output 3 "Motor running": Used to find out whether the motor is stopped or running.

<table>
<thead>
<tr>
<th>Output 3 - DIGITAL : Motor running</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 : Motor running</td>
</tr>
<tr>
<td>1 : Motor stopped</td>
</tr>
</tbody>
</table>

Figure 275

State of digital output 4 "Error": Used to find out whether an error has been detected.

<table>
<thead>
<tr>
<th>Output 4 - DIGITAL : Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 : Error detected</td>
</tr>
<tr>
<td>1 : No error</td>
</tr>
</tbody>
</table>

Figure 276
12.2.7.6. Type 7 “Outputs” Tab Parameters

State of digital output 1 “Target Reached Flag”: Used to find out whether the position setpoint has been reached.

<table>
<thead>
<tr>
<th>Output 1 - DIGITAL : Target Reached Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Position target not reached</td>
</tr>
<tr>
<td>1: Position target reached</td>
</tr>
</tbody>
</table>

Figure 277

Setting the parameters of PWM output 2 “Real torque (centered on 50%)”: The parameters can be set for the signal frequency of this output and the torque value corresponding to a cyclical ratio of 100% (scaling).

- If cyclical ratio = 0% → Braking torque supplied = "S2 torque".
- If cyclical ratio = 50% → Torque supplied = 0 mNm.
- If cyclical ratio = 100% → Motor torque supplied = "S2 torque".

<table>
<thead>
<tr>
<th>Output 2 - PWM : Real torque (centered on 50%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM frequency: 1000 Hz</td>
</tr>
<tr>
<td>S2 torque (100% PWM): 1000 mNm</td>
</tr>
</tbody>
</table>

Figure 278

Combinations of digital outputs 3 & 4 “Motor status”: Used to find out the motor status.

<table>
<thead>
<tr>
<th>Outputs 3 & 4 - DIGITAL : Motor status</th>
</tr>
</thead>
<tbody>
<tr>
<td>00: Error detected</td>
</tr>
<tr>
<td>01: Homing in progress OR no homing</td>
</tr>
<tr>
<td>10: Homing completed AND motor stopped</td>
</tr>
<tr>
<td>11: Motor running (positioning)</td>
</tr>
</tbody>
</table>

Figure 279
12.2.7.7. Type 8 "Outputs" Tab Parameters

State of digital output 1 "Target Reached Flag": Used to find out whether the position setpoint has been reached.

- **Output 1 : DIGITAL : Target Reached Flag**
 - 0: Position target not reached
 - 1: Position target reached

![Figure 280](image)

Setting the parameters of PWM output 2 "Real torque (centered on 50%)": The parameters can be set for the signal frequency of this output and the torque value corresponding to a cyclical ratio of 100% (scaling).

- If cyclical ratio = 0% → Braking torque supplied = "S2 torque".
- If cyclical ratio = 50% → Torque supplied = 0 mNm.
- If cyclical ratio = 100% → Motor torque supplied = “S2 torque”.

- **Output 2 : PWM : Real torque (centered on 50%)**
 - PWM frequency: ![1000 Hz](image)
 - S2 torque (100% PWM): ![1000 mNm](image)

![Figure 281](image)

Combinations of digital outputs 3 & 4 "Motor status": Used to find out the motor status.

- **Outputs 3 & 4 : DIGITAL : Motor status**
 - 00: Error detected or motor in stop mode AND no homing
 - 01: Motor running (positioning)
 - 10: Motor stopped AND homing completed
 - 11: Not used

![Figure 282](image)
12.2.7.8. Type 9 "Outputs" Tab Parameters

Setting the parameters of Pulse output 1 "Real speed": A Hall pulse with configurable width (100 to 800 µs) is generated each time one of the 3 motor Hall sensors changes state.

80140_SMi21 and 80180_SMi21 motors have 12 Hall pulses per revolution (2 pairs of poles). The 80280_SMi21 motor has 24 Hall pulses per revolution (4 pairs of poles).

![Figure 283](output1.png)

State of digital output 2 "Real direction": Used to find out the motor direction of rotation.

![Figure 284](output2.png)

Combinations of digital outputs 3 & 4 "Motor status": Used to find out the motor status.

![Figure 285](output3-4.png)
12.2.7.9. "Tuning" Tab Parameters

Selection of the various parameters to be represented in graphic form: either 1, 2, 3 or 4 parameters. The system position response (measurement vs setpoint) can therefore be compared while displaying changes in the current and the speed.

- Real speed
- Real torque
- Current position
- Position setpoint

Figure 286

Set the PID controller factors in the position control loop (this function is reserved for advanced users). The values given in the example below ensure correct product operation in the majority of cases.

<table>
<thead>
<tr>
<th>Position control loop parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_P = 0.500000$</td>
</tr>
<tr>
<td>$K_d = 3.000000$</td>
</tr>
</tbody>
</table>

Figure 287

It is possible to set the recording time you wish to view, from 1 to 300 seconds. The sampling interval is 10 ms. During data acquisition, the other HMI functions are not available.

Figure 288

"Curve Drawing" button: used to start data acquisition. Curves are only displayed once acquisition is complete.

"Export Data" button: used to retrieve data corresponding to the selected parameters in a text file (.txt). To make this file compatible with the Excel spreadsheet, change its extension to .csv.

Figure 289
Example:
- Position 1: 2,000,000 points, acceleration ramp 400 rpm/sec, speed step 1000 rpm, deceleration ramp 100 rpm/sec.
- Position 2: 0 points, acceleration ramp 400 rpm/sec, speed step 1000 rpm, deceleration ramp 100 rpm/sec. This gives us the following graphic representation:

![Motor Graphic](image)

Figure 290

Note: The display scales can be changed with the mouse wheel. Other functions are available by right-clicking the mouse.
12.2.7.10. "Limits" Tab Parameters

WARNING

UNEXPECTED MOVEMENT
An inappropriate setting for the torque values can result in unexpected movements of the application and destruction of the motor.

- Make sure this will not cause any damage.
- Do not continue with the test if there is anyone or any obstacle in the hazardous zone.

Failure to comply with these precautions will result in death, serious injury or equipment damage.

This tab can be used to set the limit values for various parameters.

![Image of torque parameters](image)

Figure 291

Setting the various torque parameters: When the application torque exceeds the torque $C_{NOMINAL}$, the motor can provide torque up to the value C_{MAX} for the maximum duration t_{MAX}. Thereafter, if the application torque is still higher than $C_{NOMINAL}$, the motor torque is limited to the value $C_{NOMINAL}$ until the application torque falls back below this value.

WARNING

VOLTAGE SURGES
During the braking phases, the motor generates voltage surges.

- Check that its voltage surges can be tolerated by the other devices connected to the same power supply.
- Use an external circuit to limit voltage surges if the brake is being used intensively.

Failure to comply with these precautions will result in death, serious injury or equipment damage.

Setting the overvoltage detection threshold parameters: If the voltage at the motor terminals exceeds this threshold, an error is generated, the motor is stopped and no holding torque is applied (freewheeling).
12.2.7.11. "Errors" Tab Parameters

Setting the parameters for the action to be taken when an over-torque error is encountered: real torque higher than the nominal torque \(C_{\text{NOMINAL}} \) for a time longer than \(t_{\text{MAX}} \).

![Figure 292](image)

For all errors affecting motor safety, the action to be taken cannot be configured: in the event of an error, the motor is stopped and no holding torque is applied (freewheeling).

![Figure 293](image)

Procedure for restarting the motor following detection of an error:
- Eliminate the cause of the fault.
- Switch to stop mode: disable digital inputs 1 to 5.
- Switch back to run mode: enable one of digital inputs 1 to 5.
12.2.8. Description of the P200 Various Tabs

For the description of tabs, expert program P201 is used as an example (for detailed information about each position expert program, see the "Expert Program P201" and "Expert Program P202" sections in this document).

12.2.8.1. Home Page

This page is common to all the expert and application programs, whether in speed, position or torque mode. It can be used to choose between the various types of application and expert programs.

In our example, we have chosen the "Position P200" category in the "Expert Programs" group, so the icons for the various P200 expert programs appear in the bottom right-hand corner of the window, and you then need to click on the one corresponding to the "P201" expert program:
12.2.8.2. "Description" Tab

This is an information tab containing a concise description of the various position profiles that are created using this expert mode:

Summary description of the profiles that can be created using this expert mode: position follows in live the position settings, choice between 2 speed profiles...

Figure 295
12.2.8.3. "Homing" Tab

This tab is used to select and configure the type of homing to be performed: offset(s), speed, homing torque, maximum duration of the homing phase, motor direction of rotation to search for the 1st stop.

![Summary description of the selected homing phase]

Selection of the type of homing to be performed: 0, 1 or 2 mechanical.

Parameters associated with the selected homing type.

12.2.8.4. "Inputs" Tab

This tab is used to configure the various inputs in this expert mode (speed profile: max speed, acceleration, deceleration; application stroke...).

![Summary description of the selected homing phase]

Summary description of the selected homing phase.
12.2.8.5. “Outputs” Tab

This tab is used to select and configure the various outputs in this expert mode (position type 5 to type 9):

<table>
<thead>
<tr>
<th>Output 1: PULSE: Real Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largest duty hist : 300 ms</td>
</tr>
<tr>
<td>Output 2: Pwm: Real Torque</td>
</tr>
<tr>
<td>Pwm frequency : 1000 Hz</td>
</tr>
<tr>
<td>52 torque (100% Pwm) : 1000 mNm</td>
</tr>
<tr>
<td>Output 3: DIGITAL: Real direction</td>
</tr>
<tr>
<td>0: Counterclockwise</td>
</tr>
<tr>
<td>1: Clockwise</td>
</tr>
<tr>
<td>Output 4: DIGITAL: Error</td>
</tr>
<tr>
<td>0: Error detected</td>
</tr>
<tr>
<td>1: No error</td>
</tr>
<tr>
<td>Output 5: DIGITAL: Type 5 parameter settings</td>
</tr>
<tr>
<td>Output 6: DIGITAL: Type 6 parameter settings</td>
</tr>
<tr>
<td>Output 7: DIGITAL: Type 7 parameter settings</td>
</tr>
<tr>
<td>Output 8: DIGITAL: Type 8 parameter settings</td>
</tr>
<tr>
<td>Output 9: DIGITAL: Type 9 parameter settings</td>
</tr>
</tbody>
</table>

Figure 298
12.2.8.6. "Tuning" Tab

This tab is used to represent some parameters (speed, position, torque, etc.) in graphic form and modify the position control loop coefficients. It is common to all the position expert programs.

12.2.8.7. "Limits" Tab

This tab is used to configure the various motor operating limits: nominal and maximum torque (torque peak authorization), the power supply overvoltage threshold and the required accuracy for the positioning.

Summary description of torque control.

Setting of target's tolerance for positioning.

Overvoltage threshold settings: if this value is exceeded, an error will be generated.

Setting the parameters associated with torque control.

Setting the position correction factors.

Export the data (.csv).

Select the parameters to be viewed in graphic form.

Set the position correction factors.

Set the display time.

Export the data (.csv).
12.2.8.8. "Errors" Tab

This tab provides information about the type of error encountered (based on the error code) and the action to be taken by the motor following this error.

Motor actions can be set when Over torque error or Position target error are detected (*not available, optional only).

Motor action selection when a target error is detected (*optional).

If an error is detected that could jeopardize motor safety, the motor is automatically turned off and left freewheeling.

Procedure for restarting the motor following detection of an error:

- Eliminate the cause of the fault.
- Switch to stop mode and then back to run mode.

Figure 301
12.2.9. **Expert Program P201**

12.2.9.1. **Description**

P201 expert program allows to:
- Perform a homing phase to initialize the system with detection of the stroke ends (mechanical stop or switch limit).
- Perform positioning in using two 0/10V analog inputs: One for coarse tuning and second for thin tuning. The total stroke (which has to be set per the user in this program) can be cut up to 65536 positions. The targeted position follows in live the 2 inputs.
- Select a speed profile (choice between 2 profiles) to go from a position to another position. A speed profile contains acceleration, deceleration and maximum allowed speed values.

12.2.9.2. **"Homing" Tab Parameters**

Set the polarity of the switch wired on digital input "In3":

![Switch Status](image)

Figure 302

Set the difference in position (in pulses) between the mechanical stops and the application total stroke limits: stop 1 (END1) represents the stroke start, stop 2 (END2) represents the stroke end.

Note: Where there is only one mechanical stop, the "Offset 2" parameter is not available.

![Offset (pulses)](image)

Figure 303

Set the search speed for stops during the homing phase.

![Homing Speed](image)

Figure 304

Set the homing torque that allows the mechanical stop to be found by detection of over-torque.
Set the maximum permitted time for the homing phase. If this value is exceeded, an error will be generated. Time limited to 300 s.

Set the direction of rotation for the first stop search.

N.B.: By default, the motor runs forward (CW).
12.2.9.3. "Inputs" Tab Parameters

Combinations of digital inputs 1 and 2: Used to choose the motion to be performed from the 4 actions indicated below.

Information concerning the polarity of the switch wired on digital input 3. This polarity is selected in the "Homing" tab (see above).

Digital input 4 - IN4: Used to select one of the two speed profile.
To go from a position to a new position, motor follows a trapezoidal trajectory. This trajectory uses the maximum speed, acceleration and deceleration which are set in the « Digital speed profile selection » zone.

NB: If the user needs to change its velocity profile during a positioning phase, it is strongly recommended to use the same deceleration slope for both velocity profiles to avoid overrun targets.
Input IN5 and IN6 setpoints: To do the position setting using the two 0-10V analog inputs.

Parameter « total stroke length » is the number of encoder pulses corresponding to the stroke when IN5 and IN6 are at 10V.

Parameter “resolution coefficient” allows to cut the « total stroke length » in 2,048 or 4,096 or 8,192 or 16,384 or 32,768 or 65,536 positions.

The distribution of the « Total stroke length » on the two analog setpoint inputs is carried out according to the rules below.

- On IN5: $[0 - 10V] \equiv [0 ; Stroke_{total_application} \times \frac{Coefficient_resolution}{Coefficient_resolution-1}]$ coded on 1024 points (coarse setting)

- On IN6: $[0 - 10V] \equiv [0 ; Course_{total_application} \times \frac{1}{Coefficient_resolution}]$ coded on 1024 points (thin setting)

The motor position setpoint is the addition of position setpoint of IN5 and of position setpoint of IN6.

In above example:

- On IN5: $[0 - 10V] \equiv [0 ; 40960 \times \frac{16-1}{16}] = [0 ; 38400]$ coded on 1,024 points (coarse setting)

- On IN6: $[0 - 10V] \equiv [0 ; 40960 \times \frac{1}{16}] = [0 ; 2560]$ coded on 1,024 points (thin setting)

Note: The sign (-) at the 10V setpoint depends from the direction of rotation during the homing sequence.
12.2.9.4. Type 5 “Outputs” Tab Parameters

State of digital output 1 “Target Reached Flag”: Used to find out whether the position setpoint has been reached.

Output 1 - DIGITAL: Target Reached Flag
0: Position target not reached
1: Position target reached

Figure 313

State of digital output 2 “Homing Sequence Information”: Used to find out how the homing phase is progressing: completed, in progress or not performed.

Output 2 - DIGITAL: Homing Sequence Information
0: Homing completed
1: Homing in progress or no homing

Figure 314

State of digital output 3 “Motor running”: Used to find out whether the motor is stopped or running.

Output 3 - DIGITAL: Motor running
0: Motor stopped
1: Motor running

Figure 315

State of digital output 4 “Error”: Used to find out whether an error has been detected.

Output 4 - DIGITAL: Error
0: No error
1: Error detected

Figure 316
12.2.9.5. Type 6 "Outputs" Tab Parameters

State of digital output 1 "Target Reached Flag": Used to find out whether the position setpoint has been reached.

Output 1 - DIGITAL : Target Reached Flag

0 : Position target not reached
1 : Position target reached

Figure 317

State of digital output 2 "Homing Sequence Information": Used to find out how the homing phase is progressing: completed, in progress or not performed.

Output 2 - DIGITAL : Homing Sequence Information

0 : Homing in progress or no homing
1 : Homing completed

Figure 318

State of digital output 3 "Motor running": Used to find out whether the motor is stopped or running.

Output 3 - DIGITAL : Motor running

0 : Motor running
1 : Motor stopped

Figure 319

State of digital output 4 "Error": Used to find out whether an error has been detected.

Output 4 - DIGITAL : Error

0 : Error detected
1 : No error

Figure 320
12.2.9.6. Type 7 “Outputs” Tab Parameters

State of digital output 1 “Target Reached Flag”: Used to find out whether the position setpoint has been reached.

- Output 1 : DIGITAL : Target Reached Flag
 - 0: Position target not reached
 - 1: Position target reached

Figure 321

Setting the parameters of PWM output 2 “Real torque (centered on 50%)”: The parameters can be set for the signal frequency of this output and the torque value corresponding to a cyclical ratio of 100% (scaling).

- If cyclical ratio = 0% → Braking torque supplied = “S2 torque”.
- If cyclical ratio = 50% → Torque supplied = 0 mNm.
- If cyclical ratio = 100% → Motor torque supplied = “S2 torque”.

- Output 2 : PWM : Real torque (centered on 50%)
 - PWM frequency: 1000 Hz
 - S2 torque (100% PWM): 1000 mN.m

Figure 322

Combinations of digital outputs 3 & 4 “Motor status”: Used to find out the motor status.

- Outputs 3 & 4 : DIGITAL : Motor status
 - 00: Error detected
 - 01: Homing in progress OR no homing
 - 10: Homing completed AND motor stopped
 - 11: Motor running (positioning)

Figure 323
12.2.9.7. Type 8 "Outputs" Tab Parameters

State of digital output 1 "Target Reached Flag": Used to find out whether the position setpoint has been reached.

- **Output 1 - DIGITAL : Target Reached Flag**
 - 0: Position target not reached
 - 1: Position target reached

Figure 324

Setting the parameters of PWM output 2 "Real torque (centered on 50%)": The parameters can be set for the signal frequency of this output and the torque value corresponding to a cyclical ratio of 100% (scaling).

- If cyclical ratio = 0% → Braking torque supplied = "S2 torque".
- If cyclical ratio = 50% → Torque supplied = 0 mNm.
- If cyclical ratio = 100% → Motor torque supplied = "S2 torque".

Figure 325

Combinations of digital outputs 3 & 4 "Motor status": Used to find out the motor status.

- **Outputs 3 & 4 - DIGITAL : Motor status**
 - 00: Error detected OR motor in stop mode AND no homing
 - 01: Motor running (positioning)
 - 10: Motor stopped AND homing completed
 - 11: Not used

Figure 326
12.2.9.8. Type 9 "Outputs" Tab Parameters

Setting the parameters of Pulse output 1 "Real speed": A Hall pulse with configurable width (100 to 800 µs) is generated each time one of the 3 motor Hall sensors changes state.

80140_SMi21 and 80180_SMi21 motors have 12 Hall pulses per revolution (2 pairs of poles). The 80280_SMi21 motor has 24 Hall pulses per revolution (4 pairs of poles).

State of digital output 2 "Real direction": Used to find out the motor direction of rotation.

Combinations of digital outputs 3 & 4 "Motor status": Used to find out the motor status.
12.2.9.9. "Tuning" Tab Parameters

Selection of the various parameters to be represented in graphic form: either 1, 2, 3 or 4 parameters. The system position response (measurement vs setpoint) can therefore be compared while displaying changes in the current and the speed.

- Real speed
- Real torque
- Current position
- Position setpoint

Figure 330

Set the PID controller factors in the position control loop (this function is reserved for advanced users). The values given in the example below ensure correct product operation in the majority of cases.

<table>
<thead>
<tr>
<th>Position control loop parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_p = 0.50000$</td>
</tr>
<tr>
<td>$K_i = 0.00600$</td>
</tr>
<tr>
<td>$K_d = 3.00000$</td>
</tr>
</tbody>
</table>

Figure 331

It is possible to set the recording time you wish to view, from 1 to 300 seconds. The sampling interval is 10 ms.

During data acquisition, the other HMI functions are not available.

Recording time: 100 Second(s)

Figure 332

"Curve Drawing" button: used to start data acquisition. Curves are only displayed once acquisition is complete.

"Export Data" button: used to retrieve data corresponding to the selected parameters in a text file (.txt). To make this file compatible with the Excel spreadsheet, change its extension to .csv.

Figure 333
Example:
- Application total stroke length = 2000000 pulses
- Speed profile: speed = 1000 rpm / acceleration = 400 rpm/sec / deceleration = 100 rpm/sec
- The following results were obtained:

![Motor Graphic](image)

NB: The display scales can be changed with the mouse wheel. Other functions are available by right-clicking the mouse.

Figure 334
12.2.9.10. "Limits" Tab Parameters

WARNING

UNEXPECTED MOVEMENT
An inappropriate setting for the torque values can result in unexpected movements of the application and destruction of the motor.
- Make sure this will not cause any damage.
- Do not continue with the test if there is anyone or any obstacle in the hazardous zone.
Failure to comply with these precautions will result in death, serious injury or equipment damage.

This tab can be used to set the limit values for various parameters.

![Torque Management](image)

Figure 335

Setting the various torque parameters: When the application torque exceeds the torque C_{NOMINAL}, the motor can provide torque up to the value C_{MAX} for the maximum duration t_{MAX}. Thereafter, if the application torque is still higher than C_{NOMINAL}, the motor torque is limited to the value C_{NOMINAL} until the application torque falls back below this value.

WARNING

VOLTAGE SURGES
During the braking phases, the motor generates voltage surges.
- Check that its voltage surges can be tolerated by the other devices connected to the same power supply.
- Use an external circuit to limit voltage surges if the brake is being used intensively.
Failure to comply with these precautions will result in death, serious injury or equipment damage.

Setting the overvoltage detection threshold parameters: If the voltage at the motor terminals exceeds this threshold, an error is generated, the motor is stopped and no holding torque is applied (freewheeling).
Figure 336

Setting of the « Acceptable position accuracy » for the position to reach: This value gives the acceptable tolerance to consider that the target position is reached. The output « target reached » will become active when motor position will be at the position [targeted position +/- the « Acceptable position accuracy »].

Figure 337
12.2.9.11. "Errors" Tab Parameters

Setting the parameters for the action to be taken when an over-torque error is encountered: real torque higher than the nominal torque "C_{NOMINAL}" for a time longer than "t_{MAX}" (in option).

Figure 338

For all errors affecting motor safety, the action to be taken cannot be configured: in the event of an error, the motor is stopped and no holding torque is applied (freewheeling).

Figure 339

Setting of the action to perform when a target error is detected: (not available, optional only)

When motor is not able to achieve in the required time limit its position target +/- the "Acceptable position accuracy", the "Position target error" is activated and the selected action will occur.

Figure 340

Procedure for restarting the motor following detection of an error:
- Eliminate the cause of the fault.
- Switch to stop mode: Inhibit inputs 1 and 2 (IN1 = IN2 = 0) to be in the « stop and erase error » mode.
- Go back to a running mode in activating input 1 or 2 or the both.
12.2.10. Expert Program P202

12.2.10.1. Description

P202 expert program allows to:
- Perform a homing phase to initialize the system with detection of the stroke ends (mechanical stop or switch limit).
- Define a position setpoint in using two 0/10V analog inputs: One for coarse tuning and second for thin tuning. The total stroke (which has to be set per the user in this program) can be cut up to 65536 positions.
- Memorize the new position setpoint
- Go to the new position target
- Select a speed profile (choice between 2 profiles) to go from a position to another position. A speed profile contains acceleration, deceleration and maximum allowed speed values.

12.2.10.2. "Homing" Tab Parameters

Set the polarity of the switch wired on digital input "In3":

![Switch Status](image1)

Set the difference in position (in pulses) between the mechanical stops and the application total stroke limits:
- stop 1 (END1) represents the stroke start, stop 2 (END2) represents the stroke end.

Note: Where there is only one mechanical stop, the "Offset 2" parameter is not available.

![Offset pulses](image2)

Set the search speed for stops during the homing phase.

![Homing Speed](image3)

Set the homing torque that allows the mechanical stop to be found by detection of overtorque.
Set the maximum permitted time for the homing phase. If this value is exceeded, an error will be generated. Time limited to 300 s.

Figure 344

| Homing Torque | 109 mN.m |

Figure 345

Set the direction of rotation for the first stop search.

N.B.: By default, the motor runs forward (CW).

Figure 346

Direction of rotation:
- Change the direction of rotation
12.2.10.3. *"Inputs" Tab Parameters*

Combinations of digital inputs 1 and 2: Used to choose the motion to be performed from the 4 actions indicated below.

![Figure 347](image)

Information concerning the polarity of the switch wired on digital input 3. This polarity is selected in the "Homing" tab (see above).

![Figure 348](image)

Digital input 4 - IN4: Used to select one of the two speed profile.

To go from a position to a new position, motor follows a trapezoidal trajectory. This trajectory uses the maximum speed, acceleration and deceleration which are set in the « Digital speed profile selection » zone.

![Figure 349](image)

Note: If the user needs to change its velocity profile during a positioning phase, it is strongly recommended to use the same deceleration slope for both velocity profiles to avoid overruns targets.
Input IN5 and IN6 setpoints: To do the position setting using the two 0-10V analog inputs.

Parameter « total stroke length » is the number of encoder pulses corresponding to the stroke when IN5 and IN6 are at 10V.

Parameter “resolution coefficient” allows to cut the « total stroke length » in 2,048 or 4,096 or 8,192 or 16,384 or 32,768 or 65,536 positions.

The distribution of the « Total stroke length » on the two analog setpoint inputs is carried out according to the rules below.

- On IN5 : \[[0 - 10V] \equiv [0 ; \text{Stroke}_{\text{totale application}} \times \frac{\text{Coefficient}_r\text{esolution} - 1}{\text{Coefficient}_r\text{esolution}} \] coded on 1024 points (coarse setting)

- On IN6 : \[[0 - 10V] \equiv [0 ; \text{Stroke}_{\text{totale application}} \times \frac{1}{\text{Coefficient}_r\text{esolution}} \] coded on 1024 points (thin setting)

The motor position setpoint is the addition of position setpoint of IN5 and of position setpoint of IN6.

In above example :
- On IN5 : \[[0 - 10V] \equiv [0 ; 40960 \times \frac{16-1}{16}] = [0 ; 38400] \] coded on 1,024 points (coarse setting)
- On IN6 : \[[0 - 10V] \equiv [0 ; 40960 \times \frac{1}{16}] = [0 ; 2560] \] coded on 1,024 points (thin setting)

Note: The sign (-) at the 10V setpoint depends from the direction of rotation during the homing sequence.
12.2.10.4. Type 5 “Outputs” Tab Parameters

State of digital output 1 “Target Reached Flag”: Used to find out whether the position setpoint has been reached.

Output 1 - DIGITAL: Target Reached Flag

0: Position target not reached
1: Position target reached

Figure 352

State of digital output 2 “Homing Sequence Information”: Used to find out how the homing phase is progressing: completed, in progress or not performed.

Output 2 - DIGITAL: Homing Sequence Information

0: Homing completed
1: Homing in progress or no homing

Figure 353

State of digital output 3 “Motor running”: Used to find out whether the motor is stopped or running.

Output 3 - DIGITAL: Motor running

0: Motor stopped
1: Motor running

Figure 354

State of digital output 4 “Error”: Used to find out whether an error has been detected.

Output 4 - DIGITAL: Error

0: No error
1: Error detected

Figure 355
12.2.10.5. Type 6 "Outputs" Tab Parameters

State of digital output 1 “Target Reached Flag”: Used to find out whether the position setpoint has been reached.

```
Output 1 - DIGITAL : Target Reached Flag
0 : Position target not reached
1 : Position target reached
```

Figure 356

State of digital output 2 "Homing Sequence Information": Used to find out how the homing phase is progressing: completed, in progress or not performed.

```
Output 2 - DIGITAL : Homing Sequence Information
0 : Homing in progress or no homing
1 : Homing completed
```

Figure 357

State of digital output 3 “Motor running”: Used to find out whether the motor is stopped or running.

```
Output 3 - DIGITAL : Motor running
0 : Motor running
1 : Motor stopped
```

Figure 358

State of digital output 4 “Error”: Used to find out whether an error has been detected.

```
Output 4 - DIGITAL : Error
0 : Error detected
1 : No error
```

Figure 359
12.2.10.6. Type 7 "Outputs" Tab Parameters

State of digital output 1 "Target Reached Flag": Used to find out whether the position setpoint has been reached.

Output 1 - DIGITAL : Target Reached Flag

- 0: Position target not reached
- 1: Position target reached

Figure 360

Setting the parameters of PWM output 2 "Real torque (centered on 50%)": The parameters can be set for the signal frequency of this output and the torque value corresponding to a cyclical ratio of 100% (scaling).

- If cyclical ratio = 0% → Braking torque supplied = "S2 torque".
- If cyclical ratio = 50% → Torque supplied = 0 mNm.
- If cyclical ratio = 100% → Motor torque supplied = "S2 torque".

Output 2 - PWM : Real torque (centered on 50%)

- PWM frequency: 1000 Hz
- S2 torque (100% PWM): 1000 mN.m

Figure 361

Combinations of digital outputs 3 & 4 "Motor status": Used to find out the motor status.

Outputs 3 & 4 - DIGITAL : Motor status

- 00: Error detected
- 01: Homing in progress OR no homing
- 10: Homing completed AND motor stopped
- 11: Motor running (positioning)

Figure 362
12.2.10.7. Type 8 "Outputs" Tab Parameters

State of digital output 1 "Target Reached Flag": Used to find out whether the position setpoint has been reached.

<table>
<thead>
<tr>
<th>Output 1 - DIGITAL : Target Reached Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 : Position target not reached</td>
</tr>
<tr>
<td>1 : Position target reached</td>
</tr>
</tbody>
</table>

Figure 363

Setting the parameters of PWM output 2 "Real torque (centered on 50%)": The parameters can be set for the signal frequency of this output and the torque value corresponding to a cyclical ratio of 100% (scaling).

- If cyclical ratio = 0% → Braking torque supplied = "S2 torque".
- If cyclical ratio = 50% → Torque supplied = 0 mNm.
- If cyclical ratio = 100% → Motor torque supplied = "S2 torque".

<table>
<thead>
<tr>
<th>Output 2 - PWM : Real torque (centered on 50%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM frequency : 1000 Hz</td>
</tr>
<tr>
<td>S2 torque (100% PWM) : 1000 mNm</td>
</tr>
</tbody>
</table>

Figure 364

Combinations of digital outputs 3 & 4 "Motor status": Used to find out the motor status.

<table>
<thead>
<tr>
<th>Outputs 3 & 4 - DIGITAL : Motor status</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 : Error detected UR motor in stop mode AND no homing</td>
</tr>
<tr>
<td>01 : Motor running (positioning)</td>
</tr>
<tr>
<td>10 : Motor stopped AND homing completed</td>
</tr>
<tr>
<td>11 : Not used</td>
</tr>
</tbody>
</table>

Figure 365
12.2.10.8. Type 9 "Outputs" Tab Parameters

Setting the parameters of Pulse output 1 "Real speed": A Hall pulse with configurable width (100 to 800 µs) is generated each time one of the 3 motor Hall sensors changes state.

80140_SMi21 and 80180_SMi21 motors have 12 Hall pulses per revolution (2 pairs of poles). The 80280_SMi21 motor has 24 Hall pulses per revolution (4 pairs of poles).

![Figure 366](image)

State of digital output 2 "Real direction": Used to find out the motor direction of rotation.

![Figure 367](image)

Combinations of digital outputs 3 & 4 "Motor status": Used to find out the motor status.

![Figure 368](image)
12.2.10.9. *"Tuning" Tab Parameters*

Selection of the various parameters to be represented in graphic form: either 1, 2, 3 or 4 parameters. The system position response (measurement vs setpoint) can therefore be compared while displaying changes in the current and the speed.

- Real speed
- Real torque
- Current position
- Position setpoint

Figure 369

Set the PID controller factors in the position control loop (this function is reserved for advanced users). The values given in the example below ensure correct product operation in the majority of cases.

![Position control loop parameters](image)

Figure 370

It is possible to set the recording time you wish to view, from 1 to 300 seconds. The sampling interval is 10 ms. During data acquisition, the other HMI functions are not available.

![Recording time](image)

Figure 371

"Curve Drawing" button: used to start data acquisition. Curves are only displayed once acquisition is complete.

"Export Data" button: used to retrieve data corresponding to the selected parameters in a text file (`.txt`). To make this file compatible with the Excel spreadsheet, change its extension to `.csv`.

![Curve Drawing](image) ![Export Data](image)

Figure 372
Example:
- Application total stroke length = 2000000 pulses
- Speed profile: speed = 1000 rpm / acceleration = 400 rpm/sec / deceleration = 100 rpm/sec
- The following results were obtained:

Note: The display scales can be changed with the mouse wheel. Other functions are available by right-clicking the mouse.
12.2.10.10. "Limits" Tab Parameters

WARNING

UNEXPECTED MOVEMENT
An inappropriate setting for the torque values can result in unexpected movements of the application and destruction of the motor.
- Make sure this will not cause any damage.
- Do not continue with the test if there is anyone or any obstacle in the hazardous zone.

Failure to comply with these precautions will result in death, serious injury or equipment damage.

This tab can be used to set the limit values for various parameters.

![Torque management diagram](image)

Figure 374

Setting the various torque parameters: When the application torque exceeds the torque "C_{NOMINAL}", the motor can provide torque up to the value "C_{MAX}" for the maximum duration "t_{MAX}". Thereafter, if the application torque is still higher than "C_{NOMINAL}"; the motor torque is limited to the value "C_{NOMINAL}" until the application torque falls back below this value.

WARNING

VOLTAGE SURGES
During the braking phases, the motor generates voltage surges.
- Check that its voltage surges can be tolerated by the other devices connected to the same power supply.
- Use an external circuit to limit voltage surges if the brake is being used intensively.

Failure to comply with these precautions will result in death, serious injury or equipment damage.

Setting the overvoltage detection threshold parameters: If the voltage at the motor terminals exceeds this threshold, an error is generated, the motor is stopped and no holding torque is applied (freewheeling).
Setting of the « Acceptable position accuracy » for the position to reach: This value gives the acceptable tolerance to consider that the target position is reached. The output « target reached » will become active when motor position will be at the position [targeted position +/- the « Acceptable position accuracy »].
12.2.10.11. "Errors" Tab Parameters

Setting the parameters for the action to be taken when an over-torque error is encountered: real torque higher than the nominal torque \(C_{\text{NOMINAL}} \) for a time longer than \(t_{\text{MAX}} \) (in option).

Figure 377

For all errors affecting motor safety, the action to be taken cannot be configured: in the event of an error, the motor is stopped and no holding torque is applied (freewheeling).

Figure 378

Setting of the action to perform when a target error is detected: (not available, optional only)

When motor is not able to achieve in the required time limit its position target +/- the “Acceptable position accuracy”, the “Position target error” is activated and the selected action will occur.

Figure 379

Procedure for restarting the motor following detection of an error:

- Eliminate the cause of the fault.
- Switch to stop mode: Inhibit inputs 1 and 2 (IN1 = IN2 = 0) to be in the « stop and erase error » mode.
- Go back to a running mode in activating input 1 or 2 or the both.
12.3. Torque Programs

12.3.1. Types of Inputs in C100 Programs

The table below defines the function associated with each of the inputs in the 2 C100 programs (the color associated with the input number corresponds to that of the I/O bundle):

<table>
<thead>
<tr>
<th>Inputs</th>
<th>C101</th>
<th>C102</th>
</tr>
</thead>
<tbody>
<tr>
<td>In1</td>
<td>ON/OFF</td>
<td>000: “In6” torque setpoint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>010: Priority torque 2</td>
</tr>
<tr>
<td>In2</td>
<td>Direction</td>
<td>00: Fast stop</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01: CW</td>
</tr>
<tr>
<td>In3</td>
<td>Not used</td>
<td>00: Fast stop</td>
</tr>
<tr>
<td>In4</td>
<td>Fast stop</td>
<td>01: CW</td>
</tr>
<tr>
<td>In5</td>
<td>Torque ramp</td>
<td>00: Real speed (centered on 50%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10: Motor running</td>
</tr>
<tr>
<td>In6</td>
<td>Torque</td>
<td>00: Error detected</td>
</tr>
<tr>
<td></td>
<td>(if In1 = In2 = In3 = 0)</td>
<td>10: Motor stopped, torque position reached and held</td>
</tr>
</tbody>
</table>

Key:
- Digital type input
- Analog or PWM type input
- Forthcoming programs

12.3.2. Types of Outputs in C100 Programs

For all expert torque programs, we have 2 configurable output configurations (the color associated with the output number corresponds to that of the I/O bundle):

<table>
<thead>
<tr>
<th>Type 2</th>
<th>Out1</th>
<th>Out2</th>
<th>Out3</th>
<th>Out4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Real speed</td>
<td>Real torque</td>
<td>Motor running</td>
<td>Error</td>
</tr>
<tr>
<td></td>
<td>PWM</td>
<td>PWM</td>
<td>Digital</td>
<td>Digital</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type 10</th>
<th>Out1</th>
<th>Out2</th>
<th>Out3</th>
<th>Out4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Real speed (centered on 50%)</td>
<td>Real torque (centered on 50%)</td>
<td>00: error detected</td>
<td>01: Motor running</td>
</tr>
<tr>
<td></td>
<td>PWM</td>
<td>PWM</td>
<td>10: Motor stopped, torque position reached and held</td>
<td>11: Motor stopped, no torque applied</td>
</tr>
</tbody>
</table>

Key:
- Digital type output
- PWM/Pulse/Frequency type output
12.3.3. Description of the Various Tabs

For the description of tabs, expert program C101 is used as an example (for detailed information about each torque expert program, see the "Expert Program C101" section in this document).

12.3.3.1. Home Page

This page is common to all the expert and application programs, whether in speed, position or torque mode. It can be used to choose between the various types of application and expert programs.

In our example, we have chosen the "Torque C100" category in the "Expert Programs" group, so the icons for the various C100 expert programs appear in the bottom right-hand corner of the window, and you then need to click on the one corresponding to the "C101" expert program:

Figure 380
12.3.3.2. "Description" Tab

This is an information tab containing a concise description of the various torque profiles that are created using this expert mode:

Summary description of the profiles that can be created using this expert mode: torque control with ramp management, etc.

Figure 381

12.3.3.3. "Inputs" Tab

This tab is used to configure the various inputs in this expert mode (digital input polarity, value, control type, maximum and minimum control limit, etc.):

Summary description of the profiles that can be created using this expert mode: torque control with ramp management, etc.

Figure 382
12.3.3.4. "Outputs" Tab

This tab is used to select and configure the various outputs in this expert mode (torque type 2 and type 10):

<table>
<thead>
<tr>
<th>Description</th>
<th>Inputs</th>
<th>Outputs</th>
<th>Tuning</th>
<th>Limits</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>Type 2</td>
<td>Type 3</td>
<td>Type 4</td>
<td>Type 5</td>
<td>Type 6</td>
</tr>
<tr>
<td>Type 7</td>
<td>Type 8</td>
<td>Type 9</td>
<td>Type 10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Output 1**: PWM - Real Speed
 - Frequency: 1000 Hz
- **Output 2**: PWM - Real Torque
 - Output 1 (1000% PWM): 1000 Hz
- **Output 3**: DIGITAL - Motor Running
 - 0: motor running
 - 1: motor stopped
- **Output 4**: DIGITAL - Error
 - 0: Error detected
 - 1: No error

Figure 383

12.3.3.5. "Tuning" Tab

This tab is used to represent some parameters (speed, torque, etc.) in graphic form and modify the torque control loop coefficients. It is common to all the torque expert programs.

- **Output 2 type parameter settings**
- **Output 10 type parameter settings**

This tab is used to view the selected parameters in graphic form.

This zone is used to:
- Select the parameters to be viewed in graphic form
- Set the torque correction factors
- Set the display time
- Export the data (.csv)

Figure 384
12.3.3.6. "Limits" Tab

This tab can be used to set the power supply overvoltage threshold.

![Overvoltage threshold settings: if this value is exceeded, an error will be generated.]

Figure 385

12.3.3.7. "Errors" Tab

This tab provides information about the type of error encountered (based on the error code) and the action to be taken by the motor following this error.

![If an error is detected that could jeopardize motor safety, the motor is automatically turned off and left freewheeling.]

Procedure for restarting the motor following detection of an error:
- Eliminate the cause of the fault.
- Switch to stop mode.

Figure 386
12.3.4. **Expert Program C101**

12.3.4.1. **Description**

Expert program C101 is used to:
- Create torque profiles with analog or PWM control.
- Set the torque up and down ramps with analog or PWM control.

12.3.4.2. "**Inputs**" Tab Parameters

Digital input 1: Used to set the "On/Off" input polarity.

![Input 1 - DIGITAL - ON / OFF](image1)

Figure 387

Digital input 2: Used to set the "Direction of Rotation" input polarity.

![Input 2 - DIGITAL - Direction of Rotation](image2)

Figure 388

Digital input 3: Not used

Digital input 4: Used to set the "Fast stop" input polarity.

This input is used to stop the motor as quickly as possible, ignoring the setpoints applied to the other inputs.

![Input 4 - DIGITAL - Fast Stop](image3)

Figure 389
Setpoint input 5: Used to select the control type for the torque ramp setpoint and fix the maximum and minimum limits for this setpoint. An inverted scale can be used.

![Figure 390](image1)

Setpoint input 6: Used to select the control type for the torque setpoint and fix the maximum and minimum limits for this setpoint. An inverted scale can be used.

![Figure 391](image2)
12.3.4.3. Type 2 “Outputs” Tab Parameters

Setting the parameters of PWM output 1 “Real Speed”: The parameters can be set for the signal frequency of this output (must be identical to the one for PWM output 2).

- If cyclical ratio = 0% → Real speed = 0 rpm.
- If cyclical ratio = 100% → Real speed = maximum speed setpoint defined in In6.

![Output 1 - PWM : Real Speed](image)

Figure 392

Setting the parameters of PWM output 2 “Real Torque”: The parameters can be set for the signal frequency of this output (must be identical to the one for PWM output 1) and the torque value corresponding to a cyclical ratio of 100% (scaling).

- If cyclical ratio = 0% → Torque supplied = 0 mNm.
- If cyclical ratio = 100% → Torque supplied = "S2 torque".

![Output 2 - PWM : Real Torque](image)

Figure 393

State of digital output 3 “Motor Running”: Used to find out whether the motor is stopped or running.

![Output 3 - DIGITAL : Motor Running](image)

Figure 394

State of digital output 4 “Error”: Used to find out whether an error has been detected.

![Output 4 - DIGITAL : Error](image)

Figure 395
12.3.4.4. **Type 10 "Outputs" Tab Parameters**

Setting the parameters of PWM output 1: "Real speed (centered on 50%)": The parameters can be set for the signal frequency of this output (must be identical to the one for PWM output 2).

- If cyclical ratio = 0% → Motor running forward (CW) at maximum speed setpoint defined in In6.
- If cyclical ratio = 50% → Real speed = 0 rpm.
- If cyclical ratio = 100% → Motor running in reverse (CCW) at maximum speed setpoint defined in In6.

```
<table>
<thead>
<tr>
<th>Output 1: PWM</th>
<th>Real speed (centered on 50%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM frequency:</td>
<td>1000 Hz</td>
</tr>
</tbody>
</table>
```

[Figure 396]

Setting the parameters of PWM output 2 "Real torque (centered on 50%)": The parameters can be set for the signal frequency of this output (must be identical to the one for PWM output 1) and the torque value corresponding to a cyclical ratio of 100% (scaling).

- If cyclical ratio = 0% → Braking torque supplied = "S2 torque".
- If cyclical ratio = 50% → Torque supplied = 0 mNm.
- If cyclical ratio = 100% → Motor torque supplied = "S2 torque".

```
<table>
<thead>
<tr>
<th>Output 2: PWM</th>
<th>Real torque (centered on 50%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM frequency:</td>
<td>1000 Hz</td>
</tr>
<tr>
<td>S2 torque (100% PWM):</td>
<td>1000 mN.m</td>
</tr>
</tbody>
</table>
```

[Figure 397]

Combinations of digital outputs 3 & 4 "Motor status": Used to find out the motor status.

```
<table>
<thead>
<tr>
<th>Outputs 3 &amp; 4: DIGITAL</th>
<th>Motor status</th>
</tr>
</thead>
<tbody>
<tr>
<td>00: Error detected</td>
<td></td>
</tr>
<tr>
<td>01: Motor running</td>
<td></td>
</tr>
<tr>
<td>10: Motor stopped, torque setpoint reached and applied</td>
<td></td>
</tr>
<tr>
<td>11: Motor stopped, no torque applied</td>
<td></td>
</tr>
</tbody>
</table>
```

[Figure 398]
12.3.4.5. "Tuning" Tab Parameters

Selection of the various parameters to be represented in graphic form: either 1, 2 or 3 parameters. The system torque response (measurement vs setpoint) can therefore be compared while displaying changes in the speed.

- Real Speed
- Real Torque
- Torque Setpoint

Figure 399

Set the PID controller factors in the torque control loop (this function is reserved for advanced users). The values given in the example below ensure correct product operation in the majority of cases.

\[
\text{Torque control loop parameters:} \\
K_p = 0.003477 \\
K_i = 0.000162 \\
K_d = 0.393930
\]

Figure 400

It is possible to set the recording time you wish to view, from 1 to 300 seconds. The sampling interval is 10 ms. During data acquisition, the other HMI functions are not available.

Figure 401

"Curve Drawing" button: used to start data acquisition. Curves are only displayed once acquisition is complete.

"Export Data" button: used to retrieve data corresponding to the selected parameters in a text file (.txt). To make this file compatible with the Excel spreadsheet, change its extension to .csv.

Figure 402
Example: With a torque setpoint on input 6 at 200 mN.m and a torque ramp setpoint on input 5 at 50 mN.m/s, this gives us the following graphic representation (recording time of 20 seconds):

![Figure 403](image1)

Note: The display scales can be changed with the mouse wheel. Other functions are available by right-clicking the mouse.

![Figure 404](image2)
12.3.4.6. "Limits" Tab Parameters

WARNING

VOLTAGE SURGES
During the braking phases, the motor generates voltage surges.
- Check that its voltage surges can be tolerated by the other devices connected to the same power supply.
- Use an external circuit to limit voltage surges if the brake is being used intensively.

Failure to comply with these precautions will result in death, serious injury or equipment damage.

Setting the overvoltage detection threshold parameters: If the voltage at the motor terminals exceeds this threshold, an error is generated, the motor is stopped and no holding torque is applied (freewheeling).

![Figure 405](image)

12.3.4.7. "Errors" Tab Parameters

For all errors affecting motor safety, the action to be taken cannot be configured: in the event of an error, the motor is stopped and no holding torque is applied (freewheeling).

![Motor safety errors](image)

Procedure for restarting the motor following detection of an error:
- Eliminate the cause of the fault.
- Switch to stop mode: disable digital input 1 "On/Off".
- Switch back to run mode: enable digital input 1 "On/Off".
13. SAVING PARAMETERS

In all the expert programs (speed, position and torque), the user can give a name to his project (4 alphanumerical characters maximum) using the "Project name" parameter in the program "Description" tab (expert program V101 will be used as an example):

![Project name parameter](image)

The "Project name" parameter can be accessed by clicking the "Motor Information" tab in the main menu bar:

![Motor Information tab](image)

The project parameters can be saved in an .xml file by clicking on "Save As" in the "File" tab of the main menu.

![File tab](image)

They can also be reused by clicking on "Open" in the "File" tab of the main menu, then selecting the appropriate "MOT1.xml" file.
Select the parameter backup file

Figure 411
When the parameter file is uploaded, the HMI automatically launches the associated expert or application program (in our example expert program V101):

![HMI Interface]

Figure 412

Press the "Load Program" button to load the "MOT1.xml" file parameters in the motor.
14. DIAGNOSTICS AND TROUBLESHOOTING

14.1. Mechanical Failures

<table>
<thead>
<tr>
<th>Error</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant temperature rise</td>
<td>Overload</td>
<td>Reduce the load</td>
</tr>
<tr>
<td></td>
<td>Holding brake not released</td>
<td>Check control of the holding brake</td>
</tr>
<tr>
<td>Whistling or knocking</td>
<td>Faulty bearings</td>
<td>Contact the after-sales service</td>
</tr>
<tr>
<td>Friction noise</td>
<td>A rotary transmission device is catching</td>
<td>Align the transmission device</td>
</tr>
<tr>
<td>Radial vibration</td>
<td>Transmission device incorrectly aligned</td>
<td>Align the transmission device</td>
</tr>
<tr>
<td></td>
<td>Transmission device unbalanced</td>
<td>Balance the transmission device</td>
</tr>
<tr>
<td></td>
<td>Twisted shaft</td>
<td>Contact the after-sales service</td>
</tr>
<tr>
<td></td>
<td>Resonance in the fixing</td>
<td>Check the rigidity of the motor fixing</td>
</tr>
<tr>
<td>Axial vibration</td>
<td>Transmission device incorrectly aligned</td>
<td>Align the transmission device</td>
</tr>
<tr>
<td></td>
<td>Transmission device being knocked</td>
<td>Check the transmission device</td>
</tr>
<tr>
<td></td>
<td>Resonance in the fixing</td>
<td>Check the rigidity of the motor fixing</td>
</tr>
</tbody>
</table>

14.2. Electrical Failures

<table>
<thead>
<tr>
<th>Error</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>The motor does not start or starts with difficulty</td>
<td>Overload</td>
<td>Reduce the load</td>
</tr>
<tr>
<td></td>
<td>Fault in the connection wires</td>
<td>Check the connection wires</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contact the after-sales service</td>
</tr>
<tr>
<td>Significant temperature rise in the stator</td>
<td>Overload</td>
<td>Reduce the load</td>
</tr>
<tr>
<td>Temperature rise in the connection terminals</td>
<td>Power supply wires disconnected or loose</td>
<td>Tighten the screws</td>
</tr>
</tbody>
</table>
15. SERVICE, MAINTENANCE AND DISPOSAL

15.1. Addresses of After-Sales Service Outlets

Please contact your distributor. The list of distributors is accessible on the CROUZET Automatismes website www.crouzet.com

15.2. Storage

The motors must only be transported and stored in dry, dust-free environments that are resistant to vibration. The ambient conditions are stated in the product technical data sheet and must be adhered to. The storage period is essentially dictated by the stability of the lubricants and should be less than 36 months. To keep the motor in working order, it is advisable to start up the drive solution occasionally.

15.3. Maintenance

Only the manufacturer is authorized to undertake repairs. Any personal intervention voids any guarantee and precludes manufacturer liability. Repairs cannot be performed with the motor mounted.

Prior to any intervention on the drive system, please refer to the Installation and Commissioning sections to find out what steps to take.

We recommend that the following operations are done at regular intervals.

Connections and fixing
 => Check the connection cables and connections regularly for signs of damage. Replace any damaged cables immediately.
 => Check that all the transmission devices are fully tightened.
 => Retighten all the mechanical and electrical bolted connections to the appropriate tightening torque.

WARNING

UNEXPECTED MOVEMENT

Exceeding the permissible ambient conditions can allow foreign bodies from the surrounding area to get in and lead to unexpected motor movements or damage to equipment.
 • Check the ambient conditions.
 • It is vital to avoid fluid stagnation in the shaft bushing. Failure to comply with these precautions can result in death, serious injury or damage to equipment.

Cleaning

Clean the motor regularly to remove any dust and dirt. If heat cannot dissipate adequately into the ambient air, this can cause abnormally high temperatures. The motors are not designed to be cleaned with high-pressure washers. Jet washing can cause water to get inside the motor. When using cleaning products or solvents, take care not to damage the motor power supply leads and any options (brake), ball bearings and the motor coating.

Check/run in the holding brake

Occasional braking with a shifted load helps conserve the holding brake's holding torque. If the holding brake produces no mechanical work over a prolonged period (braking with a shifted load), some parts of the holding brake can corrode or other deposits can accumulate and thus reduce the holding torque.

The holding brake has been run in on leaving the factory. If the holding brake produces no mechanical work over a prolonged period, some parts of the holding brake can corrode. If the holding brake should not demonstrate the holding torque specified in the technical specifications, it would need to be run in again:
15.4. Replacing the Motor

- Disconnect all the supply voltages. Make sure that no other voltage is applied (safety instructions).
- Mark all connections and demount the product.
- Replace it with a motor with the same part number.
- Install the new product as described in section 4 "Installation".
- Commission the product as described in section 5 "Commissioning".

15.5. Dispatch, Storage, Disposal

Comply with the ambient conditions described in the “TECHNICAL SPECIFICATIONS” section.

Dispatch
Protect the product against shocks during transport.
Use the original packaging for this purpose.

Storage
Only store the product in the stated permissible ambient conditions in terms of temperature and air humidity.
Protect the product against dust and dirt.

Disposal
The product is made up of various materials that can be reused or are suitable for separation and recycling.
Dispose of the product in accordance with local regulations.
15.6. Terminology and Abbreviations

Encoder
Mounted on the motor, the angular position sensor provides frequency pulses proportional to the motor speed.

Degree of protection
The degree of protection is a standard definition used for electrical equipment that aims to describe the protection against penetration of solids and liquids inside the motor casing (for example IP54M). The M indicates that the tests are conducted with the motor running.
This value cannot take account of the seal around the output shaft, for which the installer must take responsibility.

Axial forces
Longitudinal traction or compression forces affecting the shaft.

Radial forces
Radial forces affecting the shaft.

Direction of rotation
Positive or negative direction of rotation of the motor shaft. The positive direction of rotation is clockwise rotation of the motor shaft, when looking at the motor from the output shaft.

Nominal speed
Motor speed of rotation when nominal torque is applied.

Nominal current
Current drawn by the motor when nominal torque is applied.

Nominal torque
Maximum applicable torque in continuous duty on the motor shaft.

Firmware
Control software embedded in the motor.

Bootloader
Function available in the HMI which can be used to update the firmware.

Commonly used abbreviations:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMI</td>
<td>Human-Machine Interface</td>
</tr>
<tr>
<td>SMi21</td>
<td>Trade name of the new CROUZET brushless range</td>
</tr>
<tr>
<td>Homing</td>
<td>Initialization phase for finding the limits</td>
</tr>
<tr>
<td>AON</td>
<td>Type of digital inputs/outputs (All Or Nothing)</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>FWD</td>
<td>Forward</td>
</tr>
<tr>
<td>REV</td>
<td>Reverse</td>
</tr>
<tr>
<td>NO</td>
<td>Normally Open</td>
</tr>
<tr>
<td>NC</td>
<td>Normally Closed</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic Compatibility</td>
</tr>
</tbody>
</table>